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Abstract

This work concerns residual-based stabilization of the Virtual Element Method for non-
linear convection-diffusion problems. It is well-known that the numerical simulations of
singularly perturbed problem produce solutions with spurious oscillations. In chapter one,
we discuss the Galerkin approximation of the convection-diffusion equation. From the in-
vestigation of a simple one-dimensional problem, it is revealed that there is an onset of
unphysical oscillations in the Galerkin solution for dominant convection. From one per-
spective, very rigorous mesh refinement acts as a remedy. As this resolve is non-viable, we
study residual-based stabilization methods that circumvent mesh fine-tuning. Then we in-
troduce the polytopal Galerkin method called the Virtual Element Method. We clearly state
the advantage of VEM over the existing polytopal methods and briefly give the construc-
tion of the VEM space. We demonstrate the usage of the polynomial projection operators
Π∇

p , Π0
p and Π0

p−1.

Chapter two is devoted to studying the SUPG stabilization of VEM for the semilinear
convection-diffusion-reaction equation. We prove theoretical estimates involving the mesh
size h and the polynomial order p. For analysis, we prove the existence of an interpola-
tion operator onto VEM space with optimal approximation property with respect to both
the parameters h, p for L2 norm and H1 semi-norm. Under suitable choice of the SUPG
parameter, the error estimate showing optimal order of convergence is derived. We obtain
the optimal convergence rate in H1 semi-norm and L2 norm for convection-dominated and
reaction-dominated phenomena, respectively. In fact we obtain optimal order for the en-
ergy norm ∥| · ∥|. Numerical experiments conducted verified our theoretical results over
convex and nonconvex meshes for VEM order p = 1, 2, 3.

The shock-capturing stabilization of VEM for the convection-diffusion equation is an-
alyzed in chapter 3. We begin by formulating a computable VEM scheme stabilized with
the shock-capturing technique for the linear convection-diffusion-reaction equation. It is
noted that the discretization of a linear problem produced a nonlinear discrete scheme. The
existence of the VEM solution was shown with the help of a variant of Brouwers fixed
point theorem. The efficiency of the shock-capturing method was investigated numerically
by comparing it with the SUPG method, for a linear problem with discontinuous boundary
conditions, on different polygonal meshes. With the success of shock-capturing in reducing
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spurious oscillations, we proceed to investigate in detail the shock-capturing stabilization
of VEM for the semilinear convection-diffusion equation. We discussed two variants of
shock-capturing technique, where in the first case, we add isotropic artificial diffusion, and
the second type adds anisotropic diffusion. Error estimate with similar order of conver-
gence as the SUPG method is derived. We used the Newton method in the simulations
to solve a nonlinear system. Numerical experiments conducted reveal the effectiveness of
the shock-capturing stabilization in diminishing the cross-wind oscillations present in the
SUPG solution.

The fourth chapter discusses the SUPG stabilization of VEM for the quasilinear convection-
diffusion-reaction equation. In this, we study the approximation of branches of nonsingular
solutions. We show the existence and uniqueness of a branch of discrete solution approx-
imating the branch of the nonsingular solution through results proved by Brezzi et al. for
a much general class of nonlinear equations. Convergence estimate showing optimal order
for H1 seminorm and the energy norm ∥| · ∥| were derived. Since the problem is quasi-
linear, on the fine mesh using the Newton method to solve the system is time-consuming.
Therefore we use the two-grid method that involves two meshes of different mesh sizes for
solving the nonlinear system of equations. Numerical experiments conducted verified the
theoretical results. The CPU time taken by the two-grid for solving the system is halved
compared to the time taken by the Newton method on a fine mesh.

In Chapter 5, we consider the discretization of the nonlocal coupled parabolic problem
within the framework of the virtual element method. In fully discrete formulation, the
backward Euler method is used for discretizing the time derivative, and VEM is used for
spatial discretization. The presence of nonlocal coefficients makes the computation of the
Jacobian more expensive in Newton’s method and destroys the sparsity of the Jacobian. In
order to resolve this problem, we propose an equivalent formulation that yields a sparse
Jacobian. We derive the error estimates in the L2 and H1 norms. A linearised scheme
without compromising the convergence rate in different norms is proposed to reduce the
computational complexity further. Finally, the theoretical results are verified through the
numerical experiments conducted on arbitrary polygonal meshes.

The final chapter discusses the possible works related to problems studied in this thesis
that can be investigated in the future.
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Chapter 1

Introduction

1.1 Convection-diffusion-reaction equation

The convection-diffusion-reaction equation arise in several fields such as fluid dynam-
ics. Some engineering applications include tracking contaminant spread in a moving water
body, pollutant transport in atmosphere, water percolation and flow in porous media (water
monitoring), pressure variation of the wind surrounding the wings of an aircraft, tracing
oil spill space-time evolution in oceans and subsurface flow problems like crude oil extrac-
tion and gas storage beneath the sea bed or land surface. A few biological applications are
blood flow in the arteries, and tissue physiology and morphogenesis depending on diffusion
of chemical morphogens in the extra-cellular fluid or matrix.

On a bounded domain Ω ⊂ R2, consider a simple steady linear convection-diffusion
equation given by,

−∇ · (K∇u) + b · ∇u = f in Ω, (1.1.1)

u = 0 on ∂Ω.

The equation in (1.1.1) involves combination of convection and diffusion processes. The
solution u(x) is the variable of interest such as species concentration for mass transfer or
temperature concentration for heat transfer. The variable K > 0 is the diffusion coefficient
such as mass diffusivity for particle motion or thermal diffusivity for heat transport. The
function b(x) ∈ [L∞(Ω)]2 is the velocity field with which the quantity u is moving. The
right hand-side function f gives the source or sink of quantity u. The term −∇ · (K∇u)
describes diffusion and the term b · ∇u represent convection.
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The weak form of (1.1.1) is, Find u ∈ H1
0 (Ω) such that

(K∇u, ∇v)Ω + (b · ∇u, v)Ω = (f, v)Ω ∀ v ∈ H1
0 (Ω). (1.1.2)

The Galerkin (or numerical) approximation of (1.1.2) produces numerical solutions
with unphysical oscillations. When the non-symmetric convection term dominates, the best
approximation property in the energy norm of the Galerkin method is affected. This leads
to poor approximation of the solution of weak form (1.1.2) by the numerical methods. We
briefly investigate the Galerkin approximation of the convection-diffusion equation using a
simple 1-D example (refer [1]) whose exact solution is known. Consider 1-D convection-
diffusion problem

wux − ϵuxx = 1, x ∈ [0, 1] (1.1.3)

u(0) = 0 and u(1) = 0. (1.1.4)

Let us denote γ =
w

ϵ
. The exact solution of the model problem (1.1.3) is

u(x) =
1

w

(
x− 1− exp(γx)

1− expγ

)
.

Let us apply the Galerkin finite element method method to obtain a approximate solution
of (1.1.3). The weak formulation is defined as : To find u ∈ H1

0 (0, 1) such that∫ 1

0

(vwux + vxϵux) dx =

∫ 1

0

v dx ∀ v ∈ H1
0 (0, 1).

As usual, discretise [0,1] using a uniform mesh of linear elements of size ’h’, with nodes
x1, x2, ...., xn. Let Vh be the finite dimensional subspace of H1

0 (0, 1) consisting of continu-
ous peicewise polynomial functions. For implementation, on a element (xi, xi+1), we use
the following shape functions :

N1(ξ) =
1

2
(1− ξ) N2(ξ) =

1

2
(1 + ξ)

where ξ is the normalised coordinate, −1 ≤ ξ ≤ 1. Then on evaluating the bilinear forms
on an interval ( xj, xj+1 ) , we obtain, the local convection matrix,

w

2

(
−1 1

−1 1

)

2



and the local diffusion matrix,
ϵ

h

(
1 −1

−1 1

)
.

We note that the diffusion matrix is symmetric, where as the convection matrix is non-
symmetric. Let us introduce mesh Peclet number,

Pe =
wh

2ϵ
.

In problem (1.1.3), choose w = 1 and varying ϵ. We solve the above 1-D problem using
the Galerkin finite element method(GFEM). The numerical approximation is computed
with a mesh of 10 uniform elements (i.e h = 1/10) for various mesh Peclet numbers
Pe = 0.25, 0.4, 0.7, 1.0, 1.5, 5. A comparison of the plot of the exact solution and the
GFEM solution for different Pe is shown in figure 1.1. We note that the approximation
deteriorates as Peclet number approaches 1 and there is onset of oscillations when mesh
Peclet number is equal to 1 or greater than 1.

Alternatively, when convection dominates or the diffusion coefficient K is very small,
the solution of the model problem (1.1.1) develop layers where the magnitude of the so-
lution vary drastically within a thin region. Layers typically arise near a boundary, where
the solution must adhere to a boundary condition and layers may also occur in the interior
of the domain due to discontinuities in the coefficients. Then the onset of oscillation can
also be seen as a mesh resolution problem in the standard numerical methods. If mesh size
h is choosen to be smaller than diffusivity , then no oscillations occur. But such an extent
of mesh refinement is computationally very expensive and the method becomes practically
inapplicable. We need to look for a technique that helps to prevent the outbreak of oscilla-
tions without the need for mesh refinement. Such a remedy is called stabilization method.

In this thesis, we consider a stabilization strategy that adds weighted residual to the
numerical method - the well-known Streamline upwind Petrov-Galerkin (SUPG) method
introduced by Brooks and Hughes in [2]. The SUPG method adds artificial diffusion
along the streamline direction. For further improvement we use a nonlinear modifica-
tion of SUPG stabilization called shock-capturing method. Unlike SUPG method, the
shock-capturing method introduced in [3] satisfies the discrete maximum principle. In the
subsequent chapters we shall discuss these stabilization method for nonlinear convection-
diffusion equation in the setting of the recently introduced Galerkin method - the Virtual
Element Method (VEM).
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Figure 1.1: Plot of the exact solution and the GFEM solution.
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1.2 The Virtual Element Method

For many practical applications, the approximation of model problem with numerical
methods involving polygonal discretisation of the domain are of interest. The idea of defin-
ing finite element shape function on polygons was proposed by Wachspress in [4]. In past,
many researchers have studied polytopal methods : the hybrid high-order method for linear
elasticity equation problem[5],weak Galerkin FEM for Biharmonic equation [6], discon-
tinuous Galerkin method [7]; mixed Mimetic finite difference [8], finite volume method [9]
and conforming polytopal finite elements [10].

The recently introduced Virtual Element Method (VEM) is a generalisation of the Fi-
nite Element Method (FEM) that is inherently adapted to deal with arbitrary polygonal or
polyhedral elements. Different from FEM is that, the finite dimensional VEM space con-
sists of polynomial space of a specified degree and other non-polynomial functions that are
locally solution of a partial differential equation. VEM is developed in such a way that the
entire computation can be carried out without explicitly evaluating the basis functions. The
computation of local stiffness and mass matrices are done using only the suitably defined
degrees of freedom of the virtual element space. This leads to easy handling of higher order
VEM and higher regularity VEM such as the more general Cα continuity for α > 1. The
VEM allows the presence of hanging nodes in the elements, use of nonconvex elements
and more general adaptively refined meshes.

Since its inception VEM has been successfully applied to several problems for example
linear elasticity [11], conforming and nonconforming VEM for elliptic equation [12, 13],
parabolic problem [14], hyperbolic problem [15], semilinear and quasilinear problems [16–
19], mixed VEM [20] for elliptic problems, acoustic vibration problem [21], Stokes prob-
lem [22], 2D magnetostatic problems [23], posteriori error estimation for the elliptic prob-
lems [24]. In a more recent paper VEM has been also applied to models of underground
fluid flows [25] wherein the virtual element method becomes a more suitable approach in
overcoming the mesh generation problems that is adherent in the simulation of these fluid
flows. In the following section, we give a description of the virtual element method space
and its associated degrees of freedom.

1.3 VEM spaces

Let {Th}h>0 be a family of partitions of Ω into polygonal elements E with h being
the maximum diameter over the polygons. Despite the fact that VEM can handle arbitrary
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polygons, just to ensure the existence of polynomial projection operators with optimal ap-
proximation properties we consider minimal restriction on polygons. For the sake of theo-
retical analysis, we require Th to be a quasi-uniform polygonal partitioning of Ω. To ensure
the shape regularity of Th, assume each element E ∈ Th satisfies the following (see [26]) :

Assumption 1.1. there exists positive constants γ and c, independent of h and E, such that

(i) E is star-shaped with respect to a disc Dγ of radius γ hE , where hE is the element
diameter,

(ii) for edge e ⊂ E, the length |e| ≥ c hE ,

(iii) boundary of E is made up of a finite number of edges, and h ≤ c hE .

Let Pp(E) denote the space of polynomials of degree ≤ p on E. An important com-
ponent in the VEM space is the following projection operators Π∇

p and Π0
p, onto the poly-

nomial space. We define the projection operator Π∇
p : H1(E) → Pp(E) by (see [12]),

(
∇(u− Π∇

p u),∇qp
)
E
= 0 ∀qp ∈ Pp(E) and

∫
∂E

(Π∇
p u− u) ds = 0, (1.3.1)

and Π0
p that is the L2 projection onto Pp(E) by,

(
u− Π0

pu, qp
)
E
= 0 ∀qp ∈ Pp(E). (1.3.2)

Similarly, we compute the polynomial Π0
p−1(∇u) ∈ (Pp−1(E))

2 by,

(
∇u−Π0

p−1∇u,qp−1

)
E
= 0 ∀qp−1 ∈ (Pp−1(E))

2. (1.3.3)

Consider the following space W p
E (see [27]) for each E ∈ Th by,

W p
E =

{
v ∈ H1(E) ∩ C0(∂E) : v|e ∈ Pp(e)∀ edge e ∈ ∂E,∆v ∈ Pp(E)

}
.

Now we define the local virtual element space V p
E as follows,

V p
E =

{
u ∈ W p

E s.t.
(
u− Π∇

p u, q
)
E
= 0 ∀q ∈ (Pp(E)/Pp−2(E))

}
, (1.3.4)

where (Pp(E)/Pp−2(E)) is the subspace of Pp(E) containing polynomials in Pp(E) that are
L2 orthogonal to Pp−2(E) (see [12]). We consider the following set of degrees of freedom
(see Figure 1.2) on V p

E by,
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(G1) the values of u at the n(E) vertices of polygon E,

(G2) the values of u at p − 1 internal Gauss-Lobatto quadrature nodes of every edge e ∈
∂E,

(G3) the moments up to order p− 2 of u in E, i.e.,∫
E

u qp−2 dx ∀qp−2 ∈ Pp−2(E).

We note that the degrees of freedom mentioned above determine u uniquely on the polygon
E, (see [27]). Therefore the dimension of the local space is given by the formula,

dimV p
E := pNE +

p(p− 1)

2
,

where NE is the number of vertices in polygon E.

Figure 1.2: Degrees of freedom for k = 1, 2, 3 (from left to right). We denote G1 by green
circle, G2 by blue rectangle and the moments G3 by red square.

Now let us define the global virtual element space V p
h by,

V p
h = {u ∈ H1

0 (Ω) s.t. u|E ∈ V p
E ∀E ∈ Th}. (1.3.5)

Note that the polynomial space Pp(E) is a subspace of the local VEM space V p
E . The

core principles of VEM are elaborately discussed in [26]. We remark that the projection
operators Π∇

p and Π0
p defined on the Sobolev space H1(E) are computable on the VEM

space V p
h , and not on the general spaces H1(E) ( refer [27] ).

1.3.1 Role of the operators Π∇
p and Π0

p

The VEM space contains the polynomial space and a set of non-polynomial functions
that are solution of certain partial differential equation. The explicit definition of the non-
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polynomial functions are not known and are never required for the computation purposes.
We demonstrate the role of the operators Π∇

p and Π0
p in the discrete formulation in guaran-

teeing the VEM computablity of the inner products in the scheme. By VEM computablity

we mean, the term is evaluated just using the degrees of freedom and the polynomial com-
ponents of the functions.

For illustration, we discuss two variety of the approximation of the gradient inner prod-
uct or the stiffness term a(u, v) := (∇u, ∇v)Ω.

Type I : Using only Π∇
p

For a function uh ∈ V p
E , we split uh into its polynomial and non-polynomial counter-

part, using the polynomial projection operators Π∇
p as follows :

uh = Π∇
p uh + uh − Π∇

p uh.

Therefore, using the property (1.3.1), we have

a(uh, vh)E = (∇Π∇
p uh, ∇Π∇

p vh) + (∇uh −∇Π∇
p uh, ∇Π∇

p vh)

+(∇Π∇
p uh, ∇vh −∇Π∇

p vh) + (∇uh −∇Π∇
p uh, ∇vh −∇Π∇

p vh)

= (∇Π∇
p uh, ∇Π∇

p vh) + (∇uh −∇Π∇
p uh, ∇vh −∇Π∇

p vh).

For each E ∈ Th, the discrete bilinear form aEh (·, ·) : V
p
E × V p

E → R is defined as follows :
∀uh, vh ∈ V E

p ,

aEh (uh, vh) := aE
(
Π∇

p uh,Π
∇
p vh

)
+ SE

a

(
(I − Π∇

p )uh, (I − Π∇
p )vh

)
, (1.3.6)

where SE
a (·, ·) is a symmetric positive definite bilinear form which ensures stability of

discrete bilinear form aEh (·, ·), that is, there exists constants 0 < µ∗ ≤ µ∗, independent of
hE , such that,

µ∗ a
E(uh, uh)E ≤ SE

a (uh, uh) ≤ µ∗ aE(uh, uh) ∀uh ∈ ker(Π∇
p ).

Finally, the global bilinear form ah(·, ·) : V p
h × V p

h → R that approximates the stiffness
term a(·, ·) is defined such that

ah(uh, vh) :=
∑
K∈Th

aEh (uh, vh) ∀ uh, vh ∈ V p
h . (1.3.7)

Type II : Using Π0
p−1 and Π∇

p

8



We split ∇uh := Π0
p−1∇uh +∇uh −Π0

p−1∇uh. Then we have using (1.3.1) and (1.3.2),

a(uh, vh)E = (Π0
p−1∇uh, Π0

p−1∇vh) + (∇uh −Π0
p−1∇uh, Π0

p−1∇vh)

(Π0
p−1∇uh, ∇vh −Π0

p−1∇vh) + (∇uh −Π0
p−1∇uh, ∇vh −Π0

p−1∇vh)

= (Π0
p−1∇uh, Π0

p−1∇vh) + (∇uh −Π0
p−1∇uh, ∇vh −Π0

p−1∇vh)

= (Π0
p−1∇uh, Π0

p−1∇vh) + (∇uh −∇Π∇
p uh, ∇vh −∇Π∇

p vh).

Similarly, for each E ∈ Th, the discrete bilinear form ãEh (·, ·) : V
p
E × V p

E → R is defined as
follows : ∀uh, vh ∈ V E

p ,

ãEh (uh, vh) :=
(
Π0

p−1∇uh, Π0
p−1∇vh

)
+ SE

a

(
(I − Π∇

p )uh, (I − Π∇
p )vh

)
, (1.3.8)

where SE
a (·, ·) is a symmetric positive definite bilinear form which ensures stability of

discrete bilinear form aEh (·, ·). Finally, the global bilinear form ãh(·, ·) : V p
h × V p

h → R
that approximates the stiffness term a(·, ·) is defined such that

ãh(uh, vh) :=
∑
K∈Th

ãEh (uh, vh) ∀ uh, vh ∈ V p
h . (1.3.9)

Among ah(·, ·) and ãh(·, ·) the choice of the discrete bilinear form to be considered for
approximating a(·, ·) is problem dependent. Through deep analysis, we can determine the
suitable discrete form that does not affect the rate of convergence (refer [28]).

A detailed procedure for the computation of the operators Π∇
p uh and Π0

puh is given in
[29] and the estimation of Π0

p−1∇uh is discussed in [30].

1.4 Motivation

The convection-diffusion-reaction equation governing many practical situations has a
complex domain under consideration, for example, a fractured networks such as in under-
ground water channels or a domain with internal substructures as in cellular biology. For
complicated domains, use of polygonal elements for discretisation is more desirable. Both
the Polygonal Finite Element Method (PFEM) and the virtual element method can accom-
modate elements with arbitrary shapes and sizes, however, one distinct feature of the VEM
when compared to the PFEM is that the later requires an explicit form of the basis functions
to compute the bilinear and the linear forms. The basis functions over arbitrary polytopes
are rational polynomials, and thus computation requires higher order numerical quadrature
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rules. Whilst in case of the VEM, no such explicit form of the basis functions is required
and moreover, higher order elements even in higher dimensions can easily be constructed.
Therefore virtual element method is highly suitable for numerically solving problems en-
tailing complex domains. Most often in transport problems, the convection part is the most
dominating. Under these circumstances, stabilization of the virtual element method is im-
perative. For linear convection-diffusion equation, the streamline upwind Petrov-Galerkin
stabilization of VEM was analysed and a priori estimate with optimal order of convergence
was derived in [31]. Our main objective is to conduct theoretical and numerical study of
residual based stabilization of the virtual element method for approximating the nonlinear
convection-diffusion-reaction problems.

1.5 Notations and Preliminaries

Let us consider a bounded domain Ω subset of R2. We state the necessary notations and
mathematical tools used in the thesis.

Definition 1.1. For p ∈ N, a measurable function f defined on Ω is called p− integrable
if it satisfies,

∥f∥Lp(Ω) :=
(∫

Ω

|f(x)|pdx
) 1

p
< ∞.

Definition 1.2. The Lp(Ω) space is the collection of all p − integrable functions defined
on Ω. That is,

Lp(Ω) :=
{
f : Ω → R

∣∣∣ ∥f∥Lp(Ω) <∞
}
.

For p = ∞, the space L∞(Ω) consists of all essentially bounded functions on Ω with the
norm,

∥f∥∞ = ess sup
x∈Ω

|f(x)| := inf
ω⊂Ω,|ω|=0

sup
Ω\ω

f(x).

Definition 1.3. We define the following inner product on the L2(Ω) :

(·, ·)Ω := ∥ · ∥2L2(Ω).

Let us denote by m = (m1,m2, . . . ,md), a d-tuple multi-index of non-negative integers
mi with its order m defined by m =

∑d
i=1mi. Then the mth order partial derivative is
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defined as
Dm =

∂m

∂xm1
1 · · · ∂xmd

d

.

Definition 1.4. (Sobolev space of order (s, p) over Ω)

For a non-negative integer s and 1 ≤ p ≤ ∞, the space is W s,p(Ω) is defined as

W s,p(Ω) := {u ∈ Lp(Ω) : Dmu ∈ Lp(Ω),m ≤ s},

equipped with the norm

∥u∥s,p =
(∑

m≤S

∥Dmu∥pLp(Ω)

)1/p
∀ 1 ≤ p <∞, ∥u∥s,∞ = sup

m≤s
∥Dmu∥L∞(Ω) p = ∞.

and the semi-norm is defined as

|u|s,p =
(∑

m=s

∥Dmu∥pLp(Ω)

)1/p
∀ 1 ≤ p <∞, |u|s,∞ = sup

m=s
∥Dmu∥L∞(Ω) p = ∞.

For p = 2, the Sobolev space W s,2(Ω) is an inner product space and is usually denoted
as Hs(Ω). Let us denote H0(Ω) := L2(Ω). To impose clarity on the domain, we use the
following notations for the norm and semi-norm defined on Hs(Ω). That is,

∥ · ∥s,Ω := ∥ · ∥s,2 and | · |s,Ω := | · |s,2.

Definition 1.5. The H1
0 (Ω) is the closure of C∞

0 (Ω) in H1(Ω) and the dual of H1
0 (Ω) is

denoted by H−1(Ω).

Proposition 1.1. (Young’s inequality)

ab ≤ ϵ a2

2
+
b2

2ϵ
∀ a, b ∈ R+ ∪ {0}, ϵ ∈ R+.

Proposition 1.2. (Hölder’s inequality for sums)

Let
1

p
+

1

q
= 1 with p, q > 1. For a1, ..., an, b1, ..., bn be real numbers. Then

n∑
i=1

|aibi| ≤

(
n∑

i=1

|ai|p
) 1

p
(

n∑
i=1

|bi|q
) 1

q

.

Proposition 1.3. (Hölder’s inequality for integrals)
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Let
1

p
+

1

q
= 1 with p, q > 1. For f ∈ Lp(Ω) and g ∈ Lq(Ω). Then fg ∈ L1(Ω) and

∥fg∥L1(Ω) ≤ ∥f∥Lp(Ω) ∥g∥Lq(Ω).

When p=q=2, this inequality is known as Cauchy-Schwarz inequality.

Proposition 1.4. (Generalised Hölder’s inequality)

Let r, p1, p2, ..., pn ∈ R+ ∪ {∞} with
1

∞
= 0, satisfy

n∑
i=1

1

pi
= r. Then for any collection

of f ′
is, i = 1, ..., n with fi ∈ Lpi(Ω), we have the relation :

∥
n∏

i=1

fi∥Lr(Ω) ≤
n∏

i=1

∥fi∥Lpi .(Ω)

1.6 Outline of the thesis

In chapter 2, we study the SUPG stabilization of VEM for a semilinear convection-
diffusion-reaction equation. We propose a computable VEM scheme, discuss the well-
posedness and optimal order convergence estimate concerning the energy norm. Chap-
ter 3 deals with the discussion of the shock-capturing stabilization of VEM. First, we
propose a computable discrete scheme for the linear convection-diffusion-reaction equa-
tion and show the existence of a numerical solution. Then we investigate the efficiency
of the shock-capturing method through numerical simulations. Subsequently, we devise
a shock-capturing stabilized VEM formulation for the semilinear convection-diffusion-
reaction equation. We prove the existence of a discrete solution. An optimal order conver-
gence estimate with respect to the energy norm is derived, and numerical simulations are
presented to illustrate the efficiency of the added stabilizer. Chapter 4 treats the SUPG sta-
bilization of VEM for the quasilinear convection-diffusion-reaction equation. We discuss
the well-posedness of the discrete scheme by approximation of branches of nonsingular
solution. We derive an optimal convergence estimate with respect to the energy norm. In
simulations, we discuss using a two-grid method to reduce the CPU time taken to solve
the discrete system. In Chapter 5, We study the VEM for the nonlocal coupled reaction-
diffusion equation. We discuss the well-posedness of the fully discrete scheme and derive
an optimal order convergence estimate with respect to the L2 norm and H1 seminorm.
Also, to restore the sparsity structure of Newton’s Jacobian, we suggest a remedy. Numer-
ical experiments validating the theoretical estimates are presented. In the final chapter, we
discuss the future scope for the topics discussed in chapters 2-5.
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Chapter 2

Virtual element method for the semilin-
ear convection-diffusion-reaction equation
on polygonal meshes

Nonlinear convection-diffusion-reaction equation arises in all branches of science and
engineering. Some important practical models include combustion of subsurface reactive
transport processes, movement of fluids in porous solids [32], drift-diffusion equations
of semiconductor device modelling, heat transfer problems [33] and heat-induced mois-
ture transport in porous media [34]. The convection-diffusion equation is a prototype of
the nonlinear Navier-Stokes equation of fluid flows. An explicit analytical solution is not
at one’s disposal for the model partial differential equations of these types with sophisti-
cated boundary conditions. Hence, researchers are interested in obtaining an efficient ap-
proximate solution for the convection-diffusion equations. We know that wild oscillations
appear in the numerical solution obtained from the standard discretisation techniques for
the singularly perturbed problems. The spurious oscillations occur in the neighbourhood
of layers of the solution. It is still challenging to devise and analyse a discrete formula-
tion that solves with optimal accuracy when the problem is either convection-dominated
or reaction-dominated. To overcome these situations several stabilization techniques have
been proposed in the literature, for example, Streamline upwind Petrov-Galerkin (SUPG)
[35, 36], local projection stabilization [37, 38], edge stabilization [39].

In many industrial and practical situations, the concerned domains are of complex ge-
ometry. For such instances, meshing using polygonal elements is highly advantageous.
Few numerical analysis involving arbitrary polygonal or polyhedral meshes can be found
in [4],[40],[41] and [42]. We can note that for these existing techniques, the method does
not allow non-convex elements and degenerating elements ( i.e. hanging node-like struc-
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tures ) in the domain discretisation. One requires performing numerical integration using
the quadrature formulas for evaluating the associated bilinear forms. The requirement of
knowing explicit canonical basis functions over polygonal elements makes the implemen-
tation of higher-order methods more inconvenient.

The virtual element method is naturally adapted to general polygonal or polyhedral
meshes. A significant feature of VEM is that it can handle meshes without an explicit
definition of shape functions. The VEM space with its associated degrees of freedom is
defined such that to obtain polynomial accurate and stable numerical solutions; we only
require the information about polynomial subspaces of local virtual element space. Suitable
polynomial projection operators are introduced into the discrete formulation to ensure that
computations are carried out only using the VEM degrees of freedom. In [29], it is noted
for diffusion or diffusion-reaction problems, VEM analysis does not involve numerical
quadrature formulas. Moreover, VEM allows the use of arbitrary polygonal meshes with
hanging nodes; that is, the angle between two edges can be 180◦. This characteristic feature
of VEM makes it more suitable for approximating problems involving the generation of
conforming adaptive meshes, for example, in fluid dynamics such as underground flow
problems [25]. In most flow/transport problems, the convection phenomenon is often more
dominating than the diffusion counterpart. Therefore, stabilization of the virtual element
method is of primary interest. In literature, for linear convection-diffusion equations, SUPG
stabilization of conforming and non-conforming virtual element method [31], [43]; local
projection stabilization of VEM [44] and VEM stabilization using link-cutting conditions
[45] are discussed. This chapter proposes and analyses virtual element discretisation of the
nonlinear convection-diffusion-reaction equation with SUPG stabilization.

2.1 Governing equation and weak formulation

Let us consider the following nonlinear convection-diffusion-reaction problem

σ u−∇ · (K∇u) + b · ∇u+ g(u) = f in Ω,

u = 0 on ∂Ω, (2.1.1)

on a bounded domain Ω ⊂ R2 with the following assumptions:

(A.1a) constant σ > 0, K ∈ L∞(Ω) satisfying K(x) ≥ K0 > 0 a.e in Ω,

(A.1b) b ∈ (W 1,∞(Ω))2 with (∇ · b)(x) = 0 a.e in Ω,

(A.1c) g ∈ C1(R) with g(0) = 0 and g′(x) ≥ g0 ≥ 0 for x ≥ 0 and f ∈ L2(Ω).
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For the purpose of practical applications such as concentration of pollutants, we con-
sider the solution u to be non-negative and bounded above i.e., u0 ≤ u ≤ u1 with u0 ≥ 0.
From (A.1c) we note that g′ is bounded on compact intervals of u. This implies g is Lips-
chitz continuous with constant L. The standard variational formulation of the continuous
problem (2.1.1) is given by : Find u ∈ H1

0 (Ω) such that

A(u, v) = (f, v)Ω ∀v ∈ H1
0 (Ω), (2.1.2)

where, A(u, v) = (σu, v)Ω + (K∇u,∇v)Ω + (b · ∇u, v)Ω + (g(u), v)Ω . We formulate
(2.1.2) as an operator equation Au = f , where the operator A : H1

0 (Ω) → H−1(Ω)

satisfies (Au, v)Ω = A(u, v) ∀u, v ∈ H1
0 (Ω). Using the assumptions (A.1a-c), we obtain

∀u, v ∈ H1
0 (Ω),

(A(u)−A(v), (u− v))Ω ≥ min{σ + g0 ; K0} ∥u− v∥1,Ω
∥Au−Av∥H−1(Ω) ≤ max{(σ + L) ; (∥b∥∞,Ω + ∥K∥∞,Ω)} ∥u− v∥1,Ω.

Thus the operator A is strongly monotone and Lipschitz continuous which implies that the
operator equation has a unique solution [46].

2.2 VEM-SUPG stabilization

When the problem is singularly perturbed, the standard numerical methods approxi-
mating (2.1.2) generate solutions affected with spurious oscillations. To overcome this
situation, a stabilization of VEM is required. In this section we formulate the Stream-
line upwind Petrov-Galerkin (SUPG) stabilization for the VEM discretization. In VEM, as
mentioned earlier, the functions in V p

h are not known explicitly in the interior of elements
E ∈ Th. Hence to guarantee the computablity of the virtual element formulation, we use
the projection operators Π0

p, Π∇
p and Π0

p−1 in the approximation of (2.1.2). The introduc-
tion of projection operators alters the skew-symmetric property of the term (b · ∇u, v)Ω.
Therefore, using the assumption (A.1b), we consider an equivalant form as follows :

(b · ∇u, v)Ω :=
1

2
(b · ∇u, v)Ω − 1

2
(b · ∇v, u)Ω. (2.2.1)

The modification (2.2.1) helps to preserve the skew-symmetric property in VEM and more-
over, this helps us to prove the well-posedness of the virtual element scheme irrespective
of mesh diameter h (unlike in [31] where one requires sufficiently small h).
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The terms in the VEM are defined as follows, one by one.

a(uh, vh) :=
(
KΠ0

p−1∇uh, Π0
p−1∇vh

)
Ω
+
∑
E∈Th

τE
(
b ·Π0

p−1∇uh, b ·Π0
p−1∇vh

)
E

+
∑
E∈Th

(
KE + τEb2

E

)
SE
1

((
I − Π∇

p

)
uh,
(
I − Π∇

p

)
vh
)
, (2.2.2)

b(uh, vh) :=
(
σΠ0

puh, Π
0
pvh
)
Ω
+
∑
E∈Th

σ SE
2

(
(I − Π0

p)uh, (I − Π0
p)vh

)
, (2.2.3)

c(uh, vh) :=
1

2

[(
b ·Π0

p−1∇uh, Π0
pvh
)
Ω
−
(
Π0

puh, b ·Π0
p−1∇vh

)
Ω

]
+
∑
E∈Th

τE
(
σΠ0

puh −∇ ·KΠ0
p−1∇uh, b ·Π0

p−1∇vh
)
E
, (2.2.4)

d(uh, vh) :=
(
ĝ(Π0

puh), Π
0
pvh
)
Ω
+
∑
E∈Th

g0 S
E
2

(
(I − Π0

p)uh, (I − Π0
p)vh

)
+
∑
E∈Th

τE
(
ĝ(Π0

puh), b ·Π0
p−1∇vh

)
E
, (2.2.5)

Fvsg(vh) :=
(
f,Π0

pvh
)
Ω
+
∑
E∈Th

τE
(
f,b ·Π0

p−1∇vh
)
E
, (2.2.6)

where KE := sup
x∈E

K(x), bE := sup
x∈E

∥b(x)∥0,R2 and let K∨
E := inf

x∈E
K(x). Then we define,

Avsg(uh, vh) := a(uh, vh) + b(uh, vh) + c(uh, vh) + d(uh, vh). (2.2.7)

We state the VEM-SUPG discrete formulation as : Find uh ∈ V p
h such that

Avsg(uh, vh) = Fvsg(vh) ∀vh ∈ V p
h . (2.2.8)

Whenever g′(·) is not bounded above in R+ we use ĝ(·) in place of g(·) defined as follows,

ĝ(u) =


g(u0) + g′(u0)(u− u0) for u ≤ u0.

g(u) for u0 ≤ u ≤ u1.

g(u1) + g′(u1)(u− u1) for u ≥ u1.

(2.2.9)

Note that SE
1 and SE

2 denote the symmetric bilinear form defined on V p
E ×V p

E . Let there ex-
ists non-zero positive constants λ∗, λ∗, µ∗ and µ∗, with λ∗ ≤ λ∗ and µ∗ ≤ µ∗, independent
of hE , such that,
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λ∗(∇uh,∇uh)E ≤ SE
1 (uh, uh) ≤ λ∗(∇uh,∇uh)E ∀uh ∈ ker(Π∇

p ), (2.2.10)

µ∗(uh, uh)E ≤ SE
2 (uh, uh) ≤ µ∗(uh, uh)E ∀uh ∈ ker(Π0

p). (2.2.11)

We consider the following choice for computational purposes :

SE
1 (uh, vh) =

ndof∑
i=1

dofi(uh) dofi(vh) and SE
2 (uh, vh) = h2E

ndof∑
i=1

dofi(uh) dofi(vh),

where dofi(uh) denotes the ith degrees of freedom of uh with ndof denoting the total de-
grees of freedom of E. Since the degrees of freedom scales like 1, suitable scaling coeffi-
cients are used for the stabilization terms SE

1 and SE
2 respectively (see [13]). The stabiliza-

tion term that appears in (2.2.5) is useful in deriving the coercivity estimate.

2.3 Error estimates

In this section we derive the error estimates for the proposed VEM-SUPG discretiza-
tion. Our analysis will follow in similar lines to the finite element error analysis performed
in [47]. Considering the assumptions of g mentioned in section 2.1 and the definition of ĝ
(see (2.2.9)) we note that ĝ′(u) is bounded on the compact intervals of u. This implies that
ĝ(·) is Lipschitz continuous with constant Lg.

2.3.1 Preliminary results

We prove the coercivity estimate followed by existence and uniqueness of the discrete
solution. The following polynomial inverse inequality is given in [48]. Let q ∈ Pr(E) with
r ∈ N ∪ {0}. Then

∥q∥0,E ≤ c
(r + 1)2

hE
∥q∥−1,E, (2.3.1)

where c is a positive constant independent of hE , r, and ∥q∥−1,E := ∥q∥(H1
0 (E))∗ . For

uh ∈ V p
h , we know that ∆uh ∈ Pp(E) ∀E ∈ Th. Taking q = ∆uh in (2.3.1) and using the

estimate ∥∆uh∥−1,E ≤ |uh|1,E given in [49], we get,

∥∆uh∥0,E ≤ µinv p
2 h−1

E |uh|1,E. (2.3.2)
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where, µinv > 0 is independent of uh, hE and p. We introduce the following norm

|||u|||2 :=
∑

E∈Th

(
∥
√
K∇u∥20,E + (σ + g0) ∥u∥20,E + τE ∥b.∇u∥20,E

)
.

Lemma 2.1 (coercivity). Let 0 ≤ τE ≤ 1

4
min

{
h2E

p4µ2
invKE

,
1

σ
,
σ + g0
L2
g

}
be satisfied. Then,

Avsg(vh, vh) ≥ θ |||vh|||2 ∀vh ∈ V p
h , (2.3.3)

where, θ = min
{

1
4
, λ∗, µ∗

}
.

Proof. We bound the terms of Avsg(·, ·) one by one. Considering the first term,

a(vh, vh) =
∑

E∈Th

(
∥
√
KΠ0

p−1∇vh∥20,E + τE∥b ·Π0
p−1∇vh∥20,E

+
(
KE + τEb

2
E

)
SE
1

(
(I − Π∇

p )vh, (I − Π∇
p )vh

) )
.

Using (2.2.10) and inequality ∥(I −Π0
p−1)∇uh∥0,E ≤ ∥∇(I − Π∇

p )uh∥0,E ([12]), we get,

a(vh, vh) ≥
∑

E∈Th

(
∥
√
KΠ0

p−1∇vh∥20,E + τE∥b ·Π0
p−1∇vh∥20,E

+
(
KE + τEb

2
E

)
λ∗∥∇(I − Π∇

p )vh∥20,E
)

≥
∑

E∈Th

(
∥
√
KΠ0

p−1∇vh∥20,E + λ∗∥
√
K(I −Π0

p−1)∇vh∥20,E

+τE∥b ·Π0
p−1∇vh∥20,E + λ∗τE∥b · (I −Π0

p−1)∇vh∥20,E
)
. (2.3.4)

Using the inequality (2.2.11), we obtain,

b(vh, vh) =
∑

E∈Th

(
∥
√
σΠ0

pvh∥20,E + σ SE
2

(
(I − Π0

p)vh, (I − Π0
p)vh

))
≥

∑
E∈Th

σ∥Π0
pvh∥20,E + µ∗

∑
E∈Th

σ∥(I − Π0
p)vh∥20,E. (2.3.5)

Consider |c(vh, vh)| =
∣∣∣0 + ∑

E∈Th
τE

(
σΠ0

pvh −∇ ·KΠ0
p−1∇vh,b ·Π0

p−1∇vh
)
E

∣∣∣.
Applying triangle inequality and Cauchy-Schwarz inequality, we get,

c(vh, vh) ≤
∑

E∈Th

(
τE σ ∥Π0

pvh∥0,E∥b ·Π0
p−1∇vh∥0,E

+τE∥∇ ·KΠ0
p−1∇vh∥0,E∥b ·Π0

p−1∇vh∥0,E
)
.
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Using τE ≤ 1

4σ
, we get, σ ∥Π0

pvh∥0,E ≤
√
σ

2
√
τE

∥Π0
pvh∥0,E. Similarly, using the inverse

inequality (2.3.2) and then using τE ≤ 1

4

h2E
p4µ2

invKE

, we get,

∥∇ ·KΠ0
p−1∇vh∥0,E ≤ 1

2
√
τE

∥
√
KΠ0

p−1∇vh∥0,E. (2.3.6)

Thus, we obtain,

|c(vh, vh)| ≤
∑

E∈Th

(1
2

√
σ∥Π0

pvh∥0,E
√
τE∥b ·Π0

p−1∇vh∥0,E

+
1

2
∥
√
KΠ0

p−1∇vh∥0,E
√
τE∥b ·Π0

p−1∇vh∥0,E
)

=
∑

E∈Th

{(√
σ∥Π0

pvh∥0,E
)(√

τE
2

∥b ·Π0
p−1∇vh∥0,E

)
+
( 1√

2
∥
√
KΠ0

p−1∇vh∥0,E
) (√

τE√
2
∥b ·Π0

p−1∇vh∥0,E
)}

.

Using Young’s inequality for products, mn ≤ m2

2
+
n2

2
, we get,

|c(vh, vh)| ≤
∑

E∈Th

(
σ

2
∥Π0

pvh∥20,E +
τE
2
∥b ·Π0

p−1∇vh∥20,E +
1

4
∥
√
KΠ0

p−1∇vh∥20,E
)
.

Thus we get,

c(vh, vh) ≥ −
∑

E∈Th

(σ
2
∥Π0

pvh∥20,E +
τE
2
∥b ·Π0

p−1∇vh∥20,E

+
1

4
∥
√
KΠ0

p−1∇vh∥20,E
)
. (2.3.7)

d(vh, vh) =
(
ĝ(Π0

pvh),Π
0
pvh
)
+
∑

E∈Th
g0 S

E
2

(
(I − Π0

p)vh, (I − Π0
p)vh

)
+
∑

E∈Th
τE
(
ĝ(Π0

pvh),b ·Π0
p−1∇vh

)
E
. (2.3.8)

Considering the first term of (2.3.8), we note

(
ĝ(Π0

pvh),Π
0
pvh
)
≥ g0

2

∑
E∈Th

∥Π0
pvh∥20,E, (2.3.9)

which can be derived from ĝ(x)x = (ĝ(x)− ĝ(0)) x ≥
∫ x

0
s ĝ′(s) ds ≥ g0

∫ x

0
s ds =

g0
2
x2, since ĝ(0) = 0 and ĝ′ ≥ g0 ≥ 0 (see assumptions provided in section 2.1). Similarly,
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for the second term of (2.3.8), using the inequality (2.2.11), we get,

∑
E∈Th

g0 S
E
2

(
(I − Π0

p)vh, (I − Π0
p)vh

)
≥ µ∗

∑
E∈Th

g0∥(I − Π0
p)vh∥20,E. (2.3.10)

For the last term of (2.3.8), since ĝ(0) = 0,

I :=
∣∣∣ ∑
E∈Th

τE
(
ĝ(Π0

pvh),b ·Π0
p−1∇vh

)
E

∣∣∣ = ∣∣∣ ∑
E∈Th

τE
(
ĝ(Π0

pvh)− ĝ(0),b ·Π0
p−1∇vh

)
E

∣∣∣.
Applying Cauchy-Schwarz inequality and the Lipschitz continuity of ĝ(·) with Lipschitz
constant Lg, we have,

I ≤
∑

E∈Th
τELg∥Π0

pvh∥0,E∥b·Π0
p−1∇vh∥0,E ≤

∑
E∈Th

√
τELg∥Π0

pvh∥0,E
√
τE∥b·Π0

p−1∇vh∥0,E.

Using τE ≤ σ + g0
4L2

g

and Young’s inequality for products, we get,

I ≤ 1

4

∑
E∈Th

(
(σ + g0) ∥Π0

pvh∥20,E + τE ∥b · Π0
p−1∇vh∥20,E

)
. This implies,

∑
E∈Th

τE
(
ĝ(Π0

pvh),b ·Π0
p−1∇vh

)
E

≥ −1

4

∑
E∈Th

(
(σ + g0) ∥Π0

pvh∥20,E

+τE ∥b · Π0
p−1∇vh∥20,E

)
.(2.3.11)

Substituting (2.3.9), (2.3.10) and (2.3.11) into (2.3.8) we get,

d(vh, vh) ≥ g0
2

∑
E∈Th

∥Π0
pvh∥20,E + µ∗

∑
E∈Th

g0∥(I − Π0
p)vh∥20,E

−1

4

∑
E∈Th

(
(σ + g0) ∥Π0

pvh∥20,E + τE ∥b ·Π0
p−1∇vh∥20,E

)
. (2.3.12)

Adding (2.3.4), (2.3.5), (2.3.7) and (2.3.12) the desired coercivity result is obtained.

Lemma 2.2. Given u ∈ H1
0 (Ω) with (∇ · (K∇u))|E ∈ L2(E). Then for all vh ∈ V p

h the

following result holds

a(u, vh) + b(u, vh) + c(u, vh) ≤ CI Ns(u) ∥|vh∥|, (2.3.13)

where, CI is a positive constant independent of E, h and p and
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Ns(u) :=
[
(1 + λ∗)max

E∈Th

(KE + τEbE
2

K∨
E

)
+max

E∈Th

( bE√
K∨

Eσ

)
+max

E∈Th

(√τEbE√
K∨

E

)
+(1 + µ∗) + max

E∈Th

(√KEτEbE

2K∨
E

)]
|||u|||+

( ∑
E∈Th

min
{ 1

τE
;
b2
E

K∨
E

}
∥u∥20,E

) 1
2
.(2.3.14)

Proof. To bound the terms a(·, ·), b(·, ·), c(·, ·), defined in (2.2.2), (2.2.3), (2.2.4), the fol-
lowing inequalities (2.3.15)-(2.3.18) discussed in [12] will be used.

For any E ∈ Th,

∥Π0
p−1∇vh∥0,E ≤ ∥∇vh∥0,E. (2.3.15)

∥Π0
pvh∥0,E ≤ ∥vh∥0,E. (2.3.16)

∥∇(I − Π∇
p )vh∥0,E ≤ ∥∇vh∥0,E. (2.3.17)

∥(I − Π0
p)vh∥0,E ≤ ∥vh∥0,E. (2.3.18)

Applying (2.2.10), Cauchy-Schwarz inequality, (2.3.15), (2.3.17), Hölder’s inequality, and
from the definition of |||·||| over a(u, vh), we get,

a(u, vh) ≤
∑

E∈Th
KE∥Π0

p−1∇u∥0,E∥Π0
p−1∇vh∥0,E + τEb

2
E∥Π0

p−1∇u∥0,E∥Π0
p−1∇vh∥0,E

+
∑

E∈Th
(KE + τEb

2
E) λ

∗∥∇(I − Π∇
P )u∥0,E ∥∇(I − Π∇

P )vh∥0,E

≤
∑

E∈Th

(KE

K∨
E

∥
√
K∇u∥0,E ∥

√
K∇vh∥0,E +

τEb
2
E

K∨
E

∥
√
K∇u∥0,E ∥

√
K∇vh∥0,E

)
+
∑

E∈Th

((KE + τEb
2
E

K∨
E

)
λ∗∥

√
K∇u∥0,E ∥

√
K∇vh∥0,E

)
≤ (1 + λ∗)max

E∈Th

(KE + τEb
2
E

K∨
E

) ∑
E∈Th

∥
√
K∇u∥0,E ∥

√
K∇vh∥0,E

≤ (1 + λ∗)max
E∈Th

(KE + τEb
2
E

K∨
E

)
|||u||| |||vh|||. (2.3.19)

For the term b(u, vh), using (2.2.11), Cauchy-Schwarz inequality, (2.3.16), (2.3.18) and
Hölder’s inequality, we get,

b(u, vh) ≤
∑

E∈Th
σ
(
∥Π0

pu∥0,E ∥Π0
pvh∥0,E + µ∗∥u− Π0

pu∥0,E∥vh − Π0
pvh∥0,E

)
≤ (1 + µ∗)

( ∑
E∈Th

σ ∥u∥20,E
) 1

2
( ∑

E∈Th
σ ∥vh∥20,E

) 1
2
.

≤ (1 + µ∗) |||u||| |||vh|||. (2.3.20)
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Applying triangle inequality and Cauchy-Schwarz inequality on c(u, vh), we get,

c(u, vh) ≤ 1

2

∑
E∈Th

∥b ·Π0
p−1∇u∥0,E ∥Π0

pvh∥0,E +
1

2

∑
E∈Th

∥Π0
pu∥0,E ∥b ·Π0

p−1∇vh∥0,E

+
∑

E∈Th
τE

(
σ ∥Π0

pu∥0,E + ∥ − ∇ ·KΠ0
p−1∇u∥0,E

)
∥b ·Π0

p−1∇vh∥0,E.

:= I + II + III + IV (2.3.21)

Using (2.3.15), (2.3.16), Hölder’s inequality and the definition of |||·|||, we get,

I ≤
∑

E∈Th

bE√
K∨

E

∥
√
K∇u∥0,E

√
σ√
σ
∥vh∥0,E ≤ max

E∈Th

(
bE√
K∨

Eσ

)
|||u||| |||vh|||.(2.3.22)

Next, the second term of (2.3.21) is bounded in two different ways. Using (2.3.15), (2.3.16),
we have,

II ≤
∑

E∈Th
∥u∥0,E

(
bE√
K∨

E

)
∥
√
K∇vh∥0,E ≤

( ∑
E∈Th

(
b2
E

K∨
E

)
∥u∥20,E

) 1
2

|||vh|||. (2.3.23)

Alternatively, we again bound II as follows,

II ≤
∑

E∈Th

1
√
τE

∥u∥0,E
√
τE

bE√
K∨

E

∥
√
K∇vh∥0,E (by (2.3.15), (2.3.16))

≤
( ∑

E∈Th

1

τE
∥u∥20,E

) 1
2
( ∑

E∈Th

(τEb2
E

K∨
E

)
∥
√
K∇vh∥20,E

) 1
2
(by Hölder’s inequality)

≤
( ∑

E∈Th

1

τE
∥u∥20,E

) 1
2
(
max
E∈Th

((σ + g0)b
2
E

L2
gK

∨
E

)) 1
2 |||vh|||.

(
using τE ≤ σ + g0

L2
g

)
(2.3.24)

Thus, combining the bounds in (2.3.23), (2.3.24), we obtain,

II ≤
( ∑

E∈Th
min

{ 1

τE
;
b2
E

K∨
E

}
∥u∥20,E

) 1
2
C∗

I |||vh|||, (2.3.25)

where, C∗
I = max

{
1,
(
max
E∈Th

(
(σ + g0)b

2
E

L2
gK

∨
E

)) 1
2
}

, is a constant independent of h, and E.

Using the assumption τE ≤ 1

4σ
, (2.3.15) and (2.3.16), we get,

III ≤
∑

E∈Th

√
σ ∥Π0

pu∥E
√
τE
2

∥b · Π0
p−1∇vh∥0,E ≤

∑
E∈Th

√
σ ∥u∥0,E

√
τEbE√
K∨

E

∥
√
K∇vh∥0,E.
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Using Hölder’s inequality and the definition of |||·|||, we obtain,

III ≤
(
max
E∈Th

√
τEbE√
K∨

E

)
|||u||| |||vh|||. (2.3.26)

Finally we bound the term IV of (2.3.21) as follows,

IV ≤
∑

E∈Th
∥
√
KΠ0

p−1∇u∥0,E
√
τE
2

bE∥Π0
p−1∇vh∥0,E (using (2.3.6))

≤
∑

E∈Th

√
KEτEbE

2K∨
E

∥
√
K∇u∥0,E ∥

√
K∇vh∥0,E (using (2.3.15))

≤
(
max
E∈Th

√
KEτEbE

2K∨
E

)
|||u||| |||vh|||. (using Hölder’s inequality and |||·|||)(2.3.27)

Substituting (2.3.22), (2.3.25), (2.3.26) and (2.3.27) into (2.3.21), we obtain,

c(u, vh) ≤
[
max
E∈Th

( bE

σ
√
K∨

E

)
+max

E∈Th

(√τEbE√
K∨

E

)
+max

E∈Th

(√KEτEbE

2K∨
E

)]
|||u||| |||vh|||

+
( ∑

E∈Th
min

{ 1

τE
;
b2
E

K∨
E

}
∥u∥20,E

) 1
2
C∗

I |||vh|||. (2.3.28)

Now, adding (2.3.19), (2.3.20) and (2.3.28), and letting CI = max(1, C∗
I ) we get the

desired result.

The following proposition (see [50]) is useful for showing the existence and uniqueness
of the discrete solution for the problem (2.2.8).

Proposition 2.1. Let H be a finite dimensional Hilbert space with inner product ⟨·, ·⟩H and

norm ∥ · ∥H . Let P : H → H be a strongly monotone and Lipschitz continuous operator.

Then P (u) = f has a unique solution for all f ∈ H .

Remark 2.1. Let us define the inner product ⟨·, ·⟩M on V p
h by ⟨wh, vh⟩M =

∑
E∈Th

(∇wh,∇vh)E
∀wh, vh ∈ V p

h , and denote, the induced norm by ∥ · ∥M . We note that V p
h with inner product

⟨·, ·⟩M is a finite dimensional Hilbert space. The norms |||·||| and ∥ · ∥M are equivalent on
V p
h . That is, there exists k1 > 0 and k2 > 0, such that,

k1∥vh∥M ≤ |||vh||| ≤ k2∥vh∥M ∀vh ∈ V p
h . (2.3.29)
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Theorem 2.1 (Well-posedness). Let the assumptions on the problem (2.1.1) be satisfied.

Then the VEM-SUPG scheme (2.2.8) has a unique solution uh ∈ V p
h .

Proof. In order to use Proposition 2.1, we first rewrite (2.2.8) in the operator form on V p
h

with inner product ⟨·, ·⟩M and norm ∥ · ∥M .
For each yh ∈ V p

h , let us define the operator Tyh : V p
h → R by Tyh(zh) = Avsg(yh, zh). Note

that for each yh ∈ V p
h , the corresponding Tyh is a bounded linear functional on V p

h . Now,
using Riesz representation theorem, there exists a unique qh ∈ V p

h such that Tyh(zh) =

⟨qh, zh⟩M , ∀zh ∈ V p
h .

The correspondence yh → qh, defines a mapping M : V p
h → V p

h such that

⟨M(yh), zh⟩M = Avsg(yh, zh) ∀zh ∈ V p
h . (2.3.30)

Consider Fvsg in (2.2.6) for a fixed f ∈ L2(Ω). We have

|Fvsg(zh)| ≤ (Cp +max
E∈Th

bEτE) ∥f∥0,Ω∥zh∥M ∀zh ∈ V p
h ,

whereCp denotes the Poincare constant. Thus for fixed f ∈ L2(Ω), Fvsg is a bounded linear
operator on V p

h . Again by Riesz representation theorem there exists a unique fvsg ∈ V p
h

such that

Fvsg(zh) = ⟨fvsg, zh⟩M ∀zh ∈ V p
h . (2.3.31)

Hence using (2.3.30) and (2.3.31), we note that the scheme (2.2.8) is equivalent to the
following operator form : Find uh ∈ V p

h such that

M(uh) = fvsg. (2.3.32)

Now we show that M is strongly monotone. Consider vh, wh ∈ V p
h , let ϕ := vh − wh and

Mϕ = M(vh) −M(wh) . We estimate ⟨Mϕ, ϕ⟩M := ⟨M(vh) −M(wh), vh − wh⟩M . We
have, ⟨Mϕ, ϕ⟩M = Avsg(vh, vh−wh)−Avsg(wh, vh−wh) = a(ϕ, ϕ)+ b(ϕ, ϕ)+ c(ϕ, ϕ)+

d(vh, ϕ)− d(wh, ϕ). Therefore, we have

⟨Mϕ, ϕ⟩M = a(ϕ, ϕ) + b(ϕ, ϕ) + c(ϕ, ϕ) +
∑

E∈Th

(
ĝ(Π0

pvh)− ĝ(Π0
pwh),Π

0
pϕ
)
E

+
∑

E∈Th
g0 S

E
2

(
(I − Π0

p)ϕ, (I − Π0
p)ϕ
)
+
∑

E∈Th
τE

(
ĝ(Π0

pvh)− ĝ(Π0
pwh),b ·Π0

p−1∇ϕ
)
E

= a(ϕ, ϕ) + b(ϕ, ϕ) + c(ϕ, ϕ) + I + II + III. (2.3.33)
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Term I is bounded by using mean value theorem on ĝ(·) and assumption (A1.c). Using
(2.2.11) we bound II. Thus we obtain,

I ≥ g0
2

∑
E∈Th

∥Π0
pϕ∥20,E. (2.3.34)

II ≥ g0 µ∗
∑

E∈Th
∥(I − Π0

p)ϕ∥20,E. (2.3.35)

Applying Cauchy-Schwarz inequality and the Lipschitz continuity of ĝ(·) we have,

|III| ≤
∑

E∈Th
τE Lg ∥Π0

pϕ∥0,E∥b ·Π0
p−1∇ϕ∥0,E

≤
∑

E∈Th

√
τE Lg ∥Π0

pϕ∥0,E
√
τE ∥b ·Π0

p−1∇ϕ∥0,E.

Similar to (2.3.11), we get,

III ≥ −1

4

∑
E∈Th

(
(σ + g0) ∥Π0

pϕ∥20,E + τE ∥b · Π0
p−1∇ϕ∥20,E

)
. (2.3.36)

Letting vh = ϕ in (2.3.4), (2.3.5) and (2.3.7), we obtain bounds for a(ϕ, ϕ), b(ϕ, ϕ) and
c(ϕ, ϕ) respectively. Therefore substituting (2.3.4), (2.3.5), (2.3.7) and (2.3.34)-(2.3.36)
into (2.3.33), and using Lemma 2.1 and (2.3.29), we get for any vh, wh ∈ V p

h ,

⟨M(vh)−M(wh), vh − wh⟩M ≥ θ |||vh − wh|||2 ≥ θ k21∥vh − wh∥2M . (2.3.37)

Next we prove Lipschitz continuity of M . Consider,

⟨Mϕ,Mϕ⟩M = ⟨M(vh),Mϕ⟩M − ⟨M(wh),Mϕ⟩M = Avsg(vh,Mϕ)− Avsg(wh,Mϕ)

= a(ϕ,Mϕ) + b(ϕ,Mϕ) + c(ϕ,Mϕ) +
∑

E∈Th

(
ĝ(Π0

pvh)− ĝ(Π0
pwh),Π

0
pMϕ

)
E

+
∑

E∈Th
g0 S

E
2

(
(I − Π0

p)ϕ, (I − Π0
p)Mϕ

)
+
∑

E∈Th
τE

(
ĝ(Π0

pvh)− ĝ(Π0
pwh),b ·Π0

p−1∇Mϕ

)
E

= a(ϕ,Mϕ) + b(ϕ,Mϕ) + c(ϕ,Mϕ) + I + II + III. (2.3.38)

In (2.3.14), bounding the L2 norm in Ns(·) by |||·||| and using (2.3.29) we get,

Ns(ϕ) ≤ CNs∥ϕ∥M ,
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where CNs > 0 is dependent on KE , bE , σ, τE , µ∗, λ∗ and k2.

Hence Lemma 2.2 and (2.3.29) implies,

a(ϕ,Mϕ) + b(ϕ,Mϕ) + c(ϕ,Mϕ) ≤ C∥ϕ∥M∥Mϕ∥M , (2.3.39)

where C = CICNsk2.

Next, using Cauchy-Schwarz inequality, Lipschitz continuity of ĝ(·), (2.3.16), Hölder’s
inequality, and then, Poincaré inequality, we get,

I ≤
∑

E∈Th
Lg∥Π0

pϕ∥0,E∥Π0
pMϕ∥0,E

≤ Lg

( ∑
E∈Th

∥ϕ∥20,E
) 1

2
(∑

E∈Th ∥Mϕ∥20,E
) 1

2 ≤ Lg C
2
P ∥ϕ∥M∥Mϕ∥M . (2.3.40)

Using (2.2.11), (2.3.18), Hölder’s inequality, and then, Poincaré inequality, we get,

II ≤ g0 µ
∗C2

P ∥ϕ∥M∥Mϕ∥M . (2.3.41)

Using τE ≤ σ + g0
4L2

g

, and estimating in a similar way, we obtain,

III ≤
∑

E∈Th

bE(σ + g0)

4Lg

∥ϕ∥0,E ∥∇Mϕ∥0,E

≤ (max
E∈Th

bE)
(σ + g0)

4Lg

CP

( ∑
E∈Th

∥∇ϕ∥20,E
) 1

2
( ∑

E∈Th
∥∇Mϕ∥20,E

) 1
2

≤ (max
E∈Th

bE)
(σ + g0)

4Lg

CP∥ϕ∥M∥Mϕ∥M . (2.3.42)

Substituting the equations (2.3.39)-(2.3.42) into (2.3.38), implies that there exists constant
C > 0, such that ∥Mϕ∥2M ≤ C∥ϕ∥M∥Mϕ∥M . That is,

∥M(vh)−M(wh)∥M ≤ C∥vh − wh∥M ∀vh, wh ∈ V p
h . (2.3.43)

Thus (2.3.37) and (2.3.43) imply that M is a strongly monotone and Lipschitz continuous
operator on V p

h respectively. Now using Proposition 2.1 (thanks to Remark 2.1), we get that
(2.3.32) has a unique solution. This implies that the scheme (2.2.8) has a unique solution.
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2.3.2 Convergence results

In this section we will prove the rate of convergence results first by deriving a lemma
on the |||u− uh||| with respect to the continuity coefficient Ns, then we use the lemma to
prove a theorem that estimates the rate of convergence.

Lemma 2.3. Let the stabilization parameter τE satisfies

0 ≤ τE ≤ θ

256
min

{ h2E
p4 µ2

invKE

;
1

σ
;
σ + g0
L2
g

}
,

where θ is as defined in Lemma 2.1. Further let u ∈ H1
0 (Ω) satisfy (2.1.1) and the

assumption (∇ · (K∇u)) |E ∈ L2(E) for all E ∈ Th and if σ is chosen such that, (σ +

g0)θ > 12(Lg + g0µ
∗), then for sufficiently small h,

|||u− uh||| ≤ Ĉ inf
vh∈V p

h

Ns(u− vh), (2.3.44)

where Ĉ depends, in particular, on σ, g0, µ∗, θ and Lg.

Proof. Let uh ∈ V p
h be the discrete solution satisfying the VEM discretization (2.2.8). For

arbitrary vh ∈ V p
h , let ϕ := u− vh, ψ := uh − vh and e := u− uh = ϕ− ψ.

First, we find a bound for |||ψ|||, in terms of |||e||| and |||ϕ|||. Note that, both u and uh satisfy
(2.2.8). Therefore, Avsg(u,wh)− Avsg(uh, wh) = 0 ∀wh ∈ V p

h . This implies,

a(e, wh) + b(e, wh) + c(e, wh) + d(u,wh)− d(uh, wh) = 0 ∀wh ∈ V p
h . (2.3.45)

Hence for ψ ∈ V p
h , using Lemma 2.1 and (2.3.45), we get,

θ|||ψ|||2 ≤ Avsg(ψ, ψ) = a(ϕ− e, ψ) + b(ϕ− e, ψ) + c(ϕ− e, ψ) + d(ψ, ψ)

≤ a(ϕ, ψ) + b(ϕ, ψ) + c(ϕ, ψ)− (a(e, ψ) + b(e, ψ) + c(e, ψ)) + d(ψ, ψ)

≤ a(ϕ, ψ) + b(ϕ, ψ) + c(ϕ, ψ) +
(
d(u, ψ)− d(uh, ψ)

)
+ d(ψ, ψ)

≤ a(ϕ, ψ) + b(ϕ, ψ) + c(ϕ, ψ) +
∑

E∈Th
g0S

E
2 ((I − Π0

p) e, (I − Π0
p)ψ)

+
∑

E∈Th

(
ĝ(Π0

pu)− ĝ(Π0
puh),Π

0
pψ
)
E

+
∑

E∈Th
τE
(
ĝ(Π0

pu)− ĝ(Π0
puh),b ·Π0

p−1∇ψ
)
E
+ d(ψ, ψ)

≤ a(ϕ, ψ) + b(ϕ, ψ) + c(ϕ, ψ) + I + II + III + d(ψ, ψ). (2.3.46)
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Using Lemma 2.2 and inequality
m√
α

√
αn ≤ m2

α
+ αn2 (choosing α =

θ

2
), we obtain,

a(ϕ, ψ) + b(ϕ, ψ) + c(ϕ, ψ) ≤ CINs(ϕ)|||ψ||| ≤
2

θ
C2

I (Ns(ϕ))
2 +

θ

2
|||ψ|||2. (2.3.47)

Applying (2.2.11), using (2.3.18), Hölder’s inequality and then Young’s inequality for prod-
ucts, we obtain,

I ≤
∑

E∈Th
g0 µ

∗ ∥e∥0,E∥ψ∥0,E

≤ g0 µ
∗

σ + g0

( ∑
E∈Th

(σ + g0)∥u− uh∥20,E
) 1

2

( ∑
E∈Th

(σ + g0)∥ψ∥20,E
) 1

2

≤

√
g0 µ

∗

σ + g0
|||u− uh|||

√
g0 µ

∗

σ + g0
|||ψ|||

≤ g0 µ
∗

σ + g0
|||u− uh|||2 +

g0 µ
∗

σ + g0
|||ψ|||2. (2.3.48)

Using Lipschitz continuity of ĝ, (2.3.16), Hölder’s inequality, then Young’s inequality
for products, we get,

II ≤
∑

E∈Th
Lg∥u− uh∥0,E∥ψ∥0,E

≤ Lg

σ + g0

( ∑
E∈Th

(σ + g0)∥u− uh∥20,E
) 1

2
( ∑

E∈Th
(σ + g0)∥ψ∥20,E

) 1
2

≤

√
Lg

(σ + g0)
|||u− uh|||

√
Lg

(σ + g0)
|||ψ|||

≤ Lg

(σ + g0)
|||u− uh|||2 +

Lg

(σ + g0)
|||ψ|||2. (2.3.49)

Again using Cauchy-Schwarz inequality, Lipschitz continuity of ĝ, (2.3.15), and the

assumption τE ≤ θ

256

h2E
p4µ2

invKE

we have,

III ≤
∑

E∈Th

√
τELg∥u− uh∥0,E

√
τEbE∥∇ψ∥0,E

≤
∑

E∈Th

√
τELg∥u− uh∥0,E

√
θ

256

bEhE

p2µinv

√
KE

∥∇ψ∥0,E

≤
√

θ

256

∑
E∈Th

√
τELg∥u− uh∥0,E

bEhE
µinvK∨

E

∥
√
K∇ψ∥0,E.

(
as p ≥ 1, 1

KE
≤ 1

K∨
E

)
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For hE ≤ µinvK
∨
E

bE

, and using τE ≤ θ

256

σ + g0
L2
g

, Hölder’s inequality, the definition of |||·|||,

and then using Young’s inequality for products, we obtain,

III ≤ θ

256

(
(σ + g0)

∑
E∈Th

∥u− uh∥20,E
) 1

2

|||ψ|||

≤
√

θ

256
|||u− uh|||

√
θ

256
|||ψ||| ≤ θ

256
|||u− uh|||2 +

θ

256
|||ψ|||2. (2.3.50)

Similar to the inequalities (2.3.48) - (2.3.50), repectively, we obtain,

d(ψ, ψ) ≤ g0 µ
∗

σ + g0
|||ψ|||2 + Lg

σ + g0
|||ψ|||2 + θ

256
|||ψ|||2. (2.3.51)

Now, substituting the results obtained in equations (2.3.47)-(2.3.51), into (2.3.46), combin-
ing similar terms and simplifying their coefficients, we get,

|||ψ|||2 ≤ β1

{
2

θ
C2

I (Ns(ϕ))
2 +

(
Lg + g0µ

∗

σ + g0
+

θ

256

)
|||u− uh|||2

}
, (2.3.52)

where, β1 =
128(σ + g0)

63(σ + g0)θ − 128(2Lg + 2g0µ∗)
> 0 (using (σ + g0)θ > 12(Lg + g0µ

∗)).

Substituting (2.3.52) in the inequality |||u− uh|||2 ≤ 2|||ϕ|||2 + 2|||ψ|||2 we get,

|||u− uh|||2 ≤ 2|||ϕ|||2 + 2β1

{2
θ
C2

I (Ns(ϕ))
2 +

(Lg + g0µ
∗

σ + g0
+

θ

256

)
|||u− uh|||2

}
.

Rearranging and simplifying the coefficients, we get,

|||u− uh|||2 ≤ 2β2|||ϕ|||2 + β1β2
4

θ
C2

I (Ns(ϕ))
2, (2.3.53)

where, β2 =
63(σ + g0)θ − 128(2Lg + 2g0µ

∗)

62(σ + g0)θ − 128(4Lg + 4g0µ∗)
> 0 (since (σ + g0)θ > 12(Lg + g0µ

∗)).

Simplifying the right-hand side (2.3.53) we have,

|||u− uh|||2 ≤ R
8

θ
β1β2C

2
I (Ns(ϕ))

2,

where, R := max(1, 1/J) and J := (4/θ) β1C
2
IC

2
1 . Thus, for vh ∈ V p

h , |||u− uh|||2 ≤
Ĉ(Ns(u− vh))

2, where, Ĉ = R
8

θ
β1β2C

2
I . This implies the required assertion (2.3.44).

Hereafter, C denotes a generic positive constant independent of hE , p and h, that has
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different meaning at different occurrences. In some instances, C may depend on the coef-
ficients of problem (2.1.1).
The following proposition is proved in Lemma 4.2 in [51].

Proposition 2.2. Consider E ∈ Th satisfying the assumptions (i),(ii) given in section 1.3

and let u ∈ Hk+1(E) . Then for each p ∈ N there exists a projection operator IE that

maps u onto the polynomial space Pp(E) such that 0 ≤ l ≤ k + 1, µ = min(p, k),

|u− IEu|l,E ≤ C
hµ+1−l
E

pk+1−l
∥u∥k+1,E. (2.3.54)

Let T̃h denote the triangulation refinement of Th : for each E ∈ Th, the triangles are
formed by joining the vertices of E to the centre of the corresponding discDγ in assumption
(i) of the mesh regularity condition stated in section 1.3. Denote by Pp

h(T̃h) the space of
continuous piecewise polynomials of degree p ∈ N over T̃h. For T ∈ T̃h we denote T̃ , to
be either T itself or union of T and its immediate neighbours.

Proposition 2.3. For every u ∈ Hk+1(T̃ ) there exists Iu ∈ Pp
h(T̃h), (see hypothesis (4.6)

in [52]) such that, µ = min(p, k),

∥u− Iu∥0,T +
hT
p

|u− Iu|1,T ≤ C
hµ+1
T

pk+1
∥u∥k+1,T̃ . (2.3.55)

Now, we prove a lemma to obtain an estimate involving h and p, for the virtual element
interpolation term, following the procedure given in [53].

Lemma 2.4. Let E ∈ Th be a convex polygon satisfying the assumptions (i),(ii) given in

section 1.3. Then, for u ∈ H1
0 (Ω) with u|E ∈ Hk+1(E), k ∈ N, there exists uI ∈ V p

h

satisfying the following,

∥u− uI∥0,E +
hE
p

|u− uI |1,E ≤ C
hµ+1
E

pk+1
∥u∥k+1,E, (2.3.56)

where µ = min(p, k).

Proof. For each E ∈ Th and Iu ∈ Pp
h(T̂h) satisfying (2.3.55) , it is possible to define

uI |E ∈ V p
E (see [51] and [53]) as the solution of the following problem : Find uI |E ∈ V p

E

such that

uI = Iu on ∂E, and (∇uI ,∇vh)E = (∇Iu,∇vh)E ∀vh ∈ V p
E ∩H1

0 (E). (2.3.57)
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Moreover, since uI ∈ H1(Ω) we note that uI ∈ V p
h . From (2.3.57) we have (see [53]),

|Iu− uI |1,E = inf
{
|Iu− zh|1,E : zh ∈ V p

E and zh = Iu on ∂E
}
.

Therefore,

|u− uI |1,E ≤ |u− Iu|1,E + |Iu− uI |1,E ≤ |u− Iu|1,E + |Iu− û|1,E, (2.3.58)

where, û is such that û ∈ V E
p is a solution of the problem (see [51]),

∆û = ∆IEu inE

û = Iu on ∂E,

where IEu is as in Proposition 2.2 satisfying (2.3.54).

Since (û− IEu) is harmonic in E we get,

|û− IEu|1,E ≤ |IEu− Iu|1,E. (2.3.59)

Substituting (2.3.59) into (2.3.58) we get,

|u− uI |1,E ≤ |u− Iu|1,E + |Iu− û|1,E
≤ |u− Iu|1,E + |Iu− IEu|1,E + |IEu− û|1,E
≤ |u− Iu|1,E + |Iu− IEu|1,E + |IEu− Iu|1,E
≤ 3|u− Iu|1,E + 2|u− IEu|1,E. (2.3.60)

Applying the results (2.3.54)-(2.3.55) in (2.3.60), and µ = min(p, k), we get,

|u− uI |1,E ≤ C
hµE
pk

∥u∥k+1,E. (2.3.61)

To bound the term ∥u − uI∥0,E , we consider the following auxiliary problem : Find
φ ∈ H1

0 (E) such that

(∇φ,∇v)E = (Iu− uI , v)E ∀v ∈ H1
0 (E). (2.3.62)

Using uI − Iu = 0 on ∂E, and (2.3.57) we get,
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∥uI − Iu∥20,E = (∇φ,∇(uI − Iu))E = (∇(φ− IEφ),∇(uI − Iu))E
≤ |φ− IEφ|1,E |uI − Iu|1,E. (2.3.63)

where IEφ ∈ V p
E ∩H1

0 (E) satisfies (2.3.54) giving the estimate,

|φ− IEφ|1,E ≤ C
hE
p
∥φ∥2,E. (2.3.64)

Substituting (2.3.64) into (2.3.63) and noting that ∥φ∥2,E ≤ C ∥uI − Iu∥0,E , we get,

∥uI − Iu∥0,E ≤ C
hE
p
|uI − Iu|1,E. (2.3.65)

Now, using (2.3.65), applying the results (2.3.55) and (2.3.61) with µ = min(p, k), we get,

∥u− uI∥0,E ≤ ∥u− Iu∥0,E + ∥Iu− uI∥0,E

≤ ∥u− Iu∥0,E + C
hE
p
|uI − Iu|1,E

≤ ∥u− Iu∥0,E + C
hE
p
|uI − u|1,E + C

hE
p
|u− Iu|1,E.

≤ C
hµ+1
E

pk+1
∥u∥k+1,E. (2.3.66)

Next, using auxillary lemma 2.3 and hp virtual interpolation estimate in (2.3.56), we
derive a convergence estimate with respect to ∥| · ∥| for the solution of the SUPG stabilized
VEM scheme (2.2.8).

Theorem 2.2. Let assumptions on τE , σ from the Lemma 2.3 be satisfied. Let uh ∈ V p
h

satisfy problem (2.2.8) and let u ∈ H1
0 (Ω) be the solution of the problem (2.1.1) with

u ∈ Hs+1(E), p ≥ s > 1, and E is convex,∀E ∈ Th. For sufficiently small h, the following

estimate holds

∥|u− uh∥|2 ≤ C
∑

E∈Th

h2sE
p2s

∥u∥2s+1,E

(
KE +

(σ + g0)h
2
E

p2

+τE b2
E +min

{ 1

τE
;
b2
E

K∨
E

}h2E
p2

)
, (2.3.67)
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Proof. Consider the interpolant uI ∈ V p
h . Then Lemma 2.3 implies,

∥|u− uh∥|2 ≤ C Ns(u− uI)
2

≤ C
[
∥|u− uI∥|+

( ∑
E∈Th

min
{ 1

τE
;
b2
E

K∨
E

}
∥u− uI∥20,E

) 1
2
]2

≤ C
(
∥|u− uI∥|2 +

∑
E∈Th

min
{ 1

τE
;
b2
E

K∨
E

}
∥u− uI∥20,E

)
≤ C

[ ∑
E∈Th

(
∥
√
K∇(u− uI)∥20,E + (σ + g0) ∥u− uI∥20,E

+τE ∥b.∇(u− uI)∥20,E
)
+
∑

E∈Th
min

{ 1

τE
;
b2
E

K∨
E

}
∥u− uI∥20,E

]
≤ C

[ ∑
E∈Th

(
KE|u− uI |21,E + (σ + g0) ∥u− uI∥20,E + τE b2

E|u− uI |21,E
)

+
∑

E∈Th
min

{ 1

τE
;
b2
E

K∨
E

}
∥u− uI∥20,E

]
.

Now using (2.3.56) from Lemma 2.4, the desired result (2.3.67) is obtained.

In the following, we will present a suitable choice for τE (proof is similar to [47], Corollary
2.1.)

Corollary 2.1. Using the assumptions of Theorem 2.2 along with
1

τE
≤ b2

E

K∨
E

and consid-

ering the following choice for τE in (2.3.67),

τE ∼ min
{ hE
pbE

;
h2E

p4 µ2
invKE

;
1

σ + g0
;
σ + g0
L2
g

}
.

Let us denote PeE :=
hE bE

pKE

, Υ
(t)
E :=

(σ + g0)h
2
E

p2KE

, Υ
(r)
E :=

L2
g h

2
E

(σ + g0) p2KE

. Then

we obtain,

∥|u− uh∥|2 ≤ C
∑

E∈Th

h2sE
p2s

Ropt
E ∥u∥2s+1,E, (2.3.68)

where, Ropt
E := KE

(
1 +Υ

(t)
E + PeE +min

{
max

{
PeE; p

2µ2
inv; Υ

(t)
E ; Υ

(r)
E

}
;
KE

K∨
E

Pe2E

})
.

For simplicity we assume the diffusion coefficient K(x) ≡ K. We now discuss the
optimality of (2.3.68) in the cases of convection dominated or reaction dominated phe-
nomenon.
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(a) In the convection dominated case, ie. Pe ≥ max{Υ(r)
E ,Υ

(t)
E } ≥ p2µ2

inv, we get,

∑
E∈Th

hE
pbE

∥b · ∇(u− uh)∥20,E ≤ C
∑
E∈Th

(hE
p

)2s+1 ∥u∥2s+1,E. (2.3.69)

(b) In the reaction dominated case, ie. min{Υ(r)
E ,Υ

(t)
E } ≥ Pe ≥ p2µ2

inv, we get,

∑
E∈Th

(σ + g0) ∥u− uh∥20,E ≤ C
∑
E∈Th

(hE
p

)2s+2 ∥u∥2s+1,E. (2.3.70)

Thus we have obtained the optimal order of convergence in both L2 and H1 norm respec-
tively. In fact, they are also optimal in the |||·||| norm.

2.4 Numerical experiments

In this section we consider two numerical examples to validate the rate of convergence
obtained theoretically from the error estimates (see section 2.3). The nonlinear system of
equations obtained from the VEM-SUPG discretization is solved with the help of Newton-
GMRES method [54]. We choose constant zero function as our initial guess and the stop-
ping criteria for the Newton’s loop is set as 10−10. For both the problems we consider the
domain to be [0, 1]× [0, 1].

The convergence of VEM-SUPG technique is evaluated in the L2(Ω) norm, H1(Ω)

norm and energy norm denoted by eh,0, eh,1 and eh,3 described as follows,

e2h,0 =
∑
E∈Th

∥u− Π0
puh∥2E, e2h,1 =

∑
E∈Th

∥∇(u− Π∇
p uh)∥2E,

e2h,3 =
∑
E∈Th

(
∥
√
K∇(u− Π∇

p uh)∥2E + (σ + g0)∥u− Π0
puh∥2E + τE∥b · ∇(u− Π∇

p uh)∥2E
)
.

2.4.1 Example 1

Let σ = 2, b(x) = (2,−1), and g(u) = − u

1 + u
. The source term f is determined by

considering the smooth solution u = xy sinπx sinπy. We consider the Dirichlet boundary
condition specified by the solution u. For this problem we perform our computations over
the hexagonal mesh shown in Figure 2.1. The comparison between the unstabilized solution
and the solution computed using VEM-SUPG stabilization for the second order VEM is
shown in Figure 2.2.
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In order to demonstrate the optimal rate of convergence, the error plots computed for
the following values of K = 10−3, 10−6 and 10−9 and VEM order p = 1, 2, 3 are shown
in Figures 2.3. The results agree well with the theoretical results proved in Section 2.3. In
Table 2.1, we present the condition numbers of the Jacobian matrix arising from Newton’s
method for K = 10−6. We can observe that the condition numbers obtained for different
mesh sizes h and VEM order p = 1, 2, 3 are bounded in the range 102 to 107. The same
behaviour is observed for other values of K which are not shown here for the sake of
brevity. We confirm that the obtained solutions are stable and accurate.

Figure 2.1: Hexagonal mesh for h = 1/20.

(a) (b)

Figure 2.2: Approximation for K = 10−9, h = 1/20 and p = 2. On the left, Unstabilized
solution, on the right, Stabilized solution.

35



h p = 1 p = 2 p = 3

1/12 4.5e2 2.2e3 4.5e5

1/24 1.5e3 6.4e3 9.1e5

1/48 5.7e3 2.2e4 1.9e6

1/96 2.3e4 7.6e4 3.7e6

1/192 9.1e4 2.9e5 7.3e6

Table 2.1: Condition number of Jacobian matrix for K = 10−6.

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Mesh size

 E
rr

o
r

 

 

e
h,0

e
h,1

e
h,3

slope=2
slope = 1
slope = 1.5

(a) p = 1

10
−3

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

Mesh size

 E
rr

o
r

 

 

e
h,0

e
h,1

e
h,3

slope=3
slope = 2
slope = 2.5

(b) p = 2

10
−2

10
−1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Mesh size
 E

rr
o
r

 

 

e
h,0

e
h,1

e
h,3

slope=4
slope = 3
slope = 3.5

(c) p = 3

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Mesh size

 E
rr

o
r

 

 

e
h,0

e
h,1

e
h,3

slope=2
slope = 1
slope = 1.5

(d) p = 1

10
−3

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

Mesh size

 E
rr

o
r

 

 

e
h,0

e
h,1

e
h,3

slope=3
slope = 2
slope = 2.5

(e) p = 2

10
−2

10
−1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Mesh size

 E
rr

o
r

 

 

e
h,0

e
h,1

e
h,3

slope=4
slope = 3
slope = 3.5

(f) p = 3
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(i) p = 3

Figure 2.3: Convergence plots with respect to hexagonl mesh for K = 10−3 (top), K =
10−6 (middle) and K = 10−9 (bottom).
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2.4.2 Example 2

Let σ = 12, b(x) = (2, 3), and g(u) = u3. The source term f is chosen in accordance
with the exact solution

u(x, y) =16x(1− x)y(1− y)×[
0.5 + π−1arctan

(
200

(
0.252 − (x− 0.5)2 − (y − 0.5)2

)) ]
.

(2.4.1)

For the boundary condition we consider the Dirichlet boundary values prescribed by the
exact solution. Since the solution possesses circular internal layer we would like to check
the rate of convergence on more general polygonal meshes shown in Figure 2.4 along with
its mesh parameters in Table 2.2.

(a) hexagon (b) nonconvex (c) random voronoi

Figure 2.4: Sample polygonal meshes for h = 1/5.

hexagon nonconvex random voronoi
h dof NE h dof NE h dof NE

0.0436 3323 1660 0.0442 4801 1600 0.0405 10655 5700
0.0219 13042 6520 0.0221 19201 6400 0.0213 42709 23000
0.0115 51682 25840 0.0110 76801 25600 0.0113 150617 81800
0.0055 205762 102880 0.0054 307201 102400 0.0054 632372 340000

Table 2.2: Mesh parameters with degrees of freedom (dof) and number of elements (NE).

We have considered VEM of order p = 1, 2, 3 for our computations. The convergence
plots are shown for K = 10−6 in Figures 2.5 and for K = 10−9 in Figures 2.6 respectively.
From the results we observe the expected rates of convergence. We have computed the
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condition number of the Jacobian matrix for hexagon, nonconvex and random voronoi
meshes by varying mesh size h. For K = 10−6 and VEM order p = 1, 2, 3 the condition
numbers are provided in Table 2.3. Similar to Example 1, we observe that the condition
numbers are bounded in the range 102 to 108. This implies that the obtained solutions are
stable and accurate.
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(i) p = 3

Figure 2.5: Convergence plots for hexagonal mesh (top), nonconvex mesh (middle) and
random voronoi mesh (bottom) for K = 10−6.

In order to make a comparison with Newton-GMRES (NG) method, we have also
solved the nonlinear system of equations using first order VEM over random voronoi mesh
by fixed point (FP) iteration method. Similar to NG method initial guess is taken as zero
function and stopping criteria is considered as 10−10. The results are displayed in Table
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2.4 in terms of number of iterations and CPU time in seconds. Even though the number
of iterations taken by FP is more than NG, the CPU time taken is relatively less. Similar
results are also observed for regular hexagon and nonconvex meshes which are not shown
here for the sake of brevity.
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(f) p = 3
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Figure 2.6: Convergence plots for hexagonal mesh (top), nonconvex mesh (middle) and
random voronoi mesh (bottom) for K = 10−9.

2.5 Summary

This chapter has formulated and analysed the virtual element discretisation of the non-
linear convection-diffusion-reaction equation with Streamline upwind Petrov Galerkin sta-
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hexagon nonconvex random voronoi
h p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

1/12 1.1e2 7.9e2 1.6e5 1.6e2 1.6e3 2.7e5 4.6e2 6.2e3 9.1e5
1/24 3.7e2 1.6e3 2.9e5 5.4e2 2.9e3 4.4e5 3.1e3 1.6e4 4.1e6
1/48 1.4e3 5.2e3 5.4e5 2.1e3 6.7e3 7.9e5 9.6e3 4.4e4 7.5e6
1/96 5.6e3 1.9e4 1.1e6 7.9e3 2.5e4 1.4e6 4.8e4 1.4e5 2.9e7

1/192 2.3e4 7.1e4 8.1e6 3.1e4 9.2e4 9.1e6 1.8e5 5.2e5 7.2e7

Table 2.3: Condition number of Jacobian matrix for K = 10−6.

h NG FP
Iteration Time Iterations Time

1/12 5 0.65s 10 0.58s
1/24 5 2.52s 10 2.45s
1/48 5 13.88s 11 9.86s
1/96 5 157.60s 11 40.06s

Table 2.4: Comparison table for NG and FP

bilization. We have suitably added the VEM stabilizer for the nonlinear term to ensure the
well-posedness. We deduced an inverse inequality result satisfied by functions in virtual
element space with explicit coefficients of h and p. We obtained a virtual element interpo-
lation operator with optimal approximation property in L2 and H1 norm for mesh size h
and polynomial order p. Error estimate showing optimal rate of convergence in parameters
h and p were derived with respect to the natural norm, ∥| · ∥|. We conducted numerical ex-
periments on two problems. The first problem contains a smooth solution, and the second
example consists of a solution possessing circular internal layers. However, we observe a
stable solution for both samples, even for a very small diffusion coefficientK. As proved in
the theoretical estimates, we attained the optimal convergence rate for higher-order virtual
element schemes and various convex and non-convex polygonal meshes.
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Chapter 3

A shock-capturing Virtual Element Method
for the semilinear convection-diffusion-reaction
equation

The SUPG stabilization of VEM discussed in Chapter 2 reduces spurious oscillations
along the streamline or flow direction. In literature, we note that sometimes even for lin-
ear problems with discontinuities, mere SUPG stabilization of numerical methods do not
entirely remove the unphysical oscillations occurring at the layers ([55],[56]). The fluc-
tuations in the SUPG solution is due to the presence of sharp layers not aligned with the
flow direction. Thus we must add additional stabilization to the SUPG method to obtain
a more accurate approximate solution. In particular, the added stabilization term must ef-
ficiently act along the crosswind direction to capture the oscillations. The remedy to this
situation is usually called the shock-capturing technique, which adds artificial diffusion in
the transverse direction around regions of layers. As we shall see, the shock-capturing term
is nonlinear since it involves the residual of the numerical method, which depends on the
approximate solution.

The shock capturing stabilization for a one-dimensional singularly perturbed problem
and its generalisation to multidimensional model problems is studied in [57]. The exposi-
tion and application of shock-capturing technique in the finite element context, for linear
advection-diffusion model problems can be found for example in [58], [59], [60], [61] ; for
nonlinear convection-diffusion-rection equations in [62], [47] and for hyperbolic system
of conservation laws in [63]. A review of the shock-capturing technique, along with the
comparison of various choices of proposed shock-capturing parameters, is given in [64].

This chapter studies the shock-capturing stabilization of VEM for the convection-diffusion
problems.We first discuss the shock-capturing technique for the linear convection-diffusion-
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reaction equation. The parameter in the shock-capturing term is a function of scaled resid-
ual. To evaluate the norm of the residual we need to know explicit definition of the nu-
merical solution in the virtual element space. But, in VEM we only have knowledge about
the polynomial subspace and the functions are identified only through degrees of free-
dom. Therefore, to estimate the norm of the residual, we introduce suitable polynomial
projection operators in the expression of residual, in the VEM setting. In section 3.1, a
computable virtual element formulation stabilized with SUPG and shock-capturing term is
proposed. From chapter 2, it is evident that a VEM stabilization of the SUPG stabilization
is required to ensure the coercivity of the VEM-SUPG formulation. Along similar lines, for
the shock-capturing term, we add a VEM stabilizer with appropriate nonlinear coefficients,
to ensure stability of the discrete scheme. Surprisingly, shock-capturing approximation of
a linear problem produces a nonlinear discrete scheme. We examine the well-posedness of
the nonlinear discrete scheme and investigate the efficiency of the shock-capturing method
with numerical examples. With this inducement, it would be interesting to analyse the
shock-capturing technique for semilinear transport problems which models many scien-
tific/engineering applications.

Subsequently, we describe the shock-capturing stabilization for semilinear convection-
diffusion-reaction equation in the VEM framework in section 3.6. Different from the linear
case, for approximating the nonlinear reaction functions, an extra VEM stabilizer with suit-
able linear coefficient is introduced. It would be interesting to verify if the shock-capturing
stabilization and the additional VEM stabilsers in the VEM formulation, do not deteriorate
the convergence rate. We give a detailed analysis of the nonlinear scheme showing the
convergence of the family of discrete solutions to the exact solution and obtaining optimal
order error estimate with respect to suitable natural norm.

3.1 Linear model Problem

Let us consider the linear convection-diffusion equation with homogeneous Dirichlet
boundary condition:

−∇ · (K∇u) + b · ∇u+ αu = f in Ω,

u = 0 on ∂Ω. (3.1.1)

Here u(x) denotes the unknown where x ∈ Ω ⊂ R2, K > 0, b ∈ W 1,∞(Ω)2 is the velocity
field, α ≥ 0 and f ∈ L2(Ω). We also assume (∇ · b)(x) = 0 a.e in Ω and K ≥ K0 > 0.

42



The bilinear form of equation (3.1.1) is defined as B : H1
0 (Ω)×H1

0 (Ω) → R such that

B(w, v) = (K∇w,∇v)Ω + (b · ∇w, v)Ω + (αw, v)Ω ∀w, v ∈ H1
0 (Ω).

Using integration by parts on the convective term (b · ∇w, v) and the condition ∇ · b = 0,
the bilinear form B, can be equivalently redefined as, ∀w, v ∈ H1

0 (Ω)

B(w, v) = (K∇w,∇v)Ω +
1

2
[(b · ∇w, v)Ω − (w,b · ∇v)Ω] + (αw, v)Ω. (3.1.2)

The weak formulation of (3.1.1) is : Find u ∈ H1
0 (Ω) such that

B(u, v) = (f, v)Ω ∀ v ∈ H1
0 (Ω). (3.1.3)

The existence and uniqueness of the solution of weak formulation (3.1.3) follows from the
Lax-Milgram lemma [65].

3.1.1 VEM Spaces

Consider {Th}h>0 to be a family of polygonal partitioning of Ω satisfying the assump-
tion 1.1 stated in Chapter 1. In our analysis, we use the polynomial projection operators
Π∇

p , Π0
p and Π0

p−1 defined in (1.3.1), (1.3.2) and (1.3.3), respectively. For approximation
we consider the global virtual element space V p

h given in (1.3.5).

3.2 VEM-SUPG formulation

We tackle the singularly perturbed case i.e., K ≪ 1, as done in Chapter 2 and proceed
to define the SUPG stabilized virtual element discretisation of the formulation (3.1.3) as
follows. Find uh ∈ V p

h such that

Bvs(uh, vh) = Fvs(vh) ∀ vh ∈ V p
h , (3.2.1)

where the bilinear form Bvs : V
p
h × V p

h → R is such that,

Bvs(wh, vh) := ah(wh, vh) + bh(wh, vh) + ch(wh, vh) + dh(wh, vh), (3.2.2)

with the terms ah(·, ·), bh(·, ·), ch(·, ·), and dh(·, ·) defined as below,
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ah(wh, vh) :=
∑

E∈Th

[(
KΠ0

p−1∇wh,Π
0
p−1∇vh

)
E
+ τE(b ·Π0

p−1∇wh,b ·Π0
p−1∇vh)E

+(K + τEb2
E)S

E
1

(
(I − Π∇

k )wh, (I − Π∇
k )vh

)]
. (3.2.3)

bh(wh, vh) :=
∑

E∈Th
[(αΠ0

pwh,Π
0
pvh)E + αSE

2 ((I − Π0
k)wh, (I − Π0

k)vh)]. (3.2.4)

ch(wh, vh) :=
1

2

∑
E∈Th

[
(b ·Π0

p−1∇wh,Π
0
pvh)E − (Π0

pwh,b ·Π0
p−1∇vh)E

]
. (3.2.5)

dh(wh, vh) :=
∑

E∈Th
τE
(
−∇ ·KΠ0

p−1∇wh + αΠ0
pwh,b ·Π0

p−1∇vh
)
E
. (3.2.6)

and the linear form Fvs : V
p
h → R is defined as

Fvs(vh) :=
∑

E∈Th

[
(f,Π0

kvh)E + τE(f, b · Π0
k−1∇vh)E

]
. (3.2.7)

where bE = sup
x∈E

∥b(x)∥R2 , τE is the stabilization parameter that is chosen accordingly and,

as usual the VEM Stabilizers SE
1 (·, ·) and SE

2 (·, ·) denotes the symmetric positive bilinear
forms defined on V k

E × V k
E by the following,

SE
1 (uh, vh) =

N∑
i=1

dofi(uh) dofi(vh) and SE
2 (uh, vh) = h2E

N∑
i=1

dofi(uh) dofi(vh),

where dofi(uh) denotes the ith degree of freedom of uh with N denoting the total degrees
of freedom. Let there exists non-zero positive constants β∗, β∗, η∗ and η∗ independent of
hE , such that,

β∗(∇uh,∇uh)E ≤ SE
1 (uh, uh) ≤ β∗(∇uh,∇uh)E ∀uh ∈ ker(Π∇

p ), (3.2.8)

η∗(uh, uh)E ≤ SE
2 (uh, uh) ≤ η∗(uh, uh)E ∀uh ∈ ker(Π0

p). (3.2.9)

We introduce the norm ∥| · ∥| to be used in our error analysis,

∥|v∥|2 :=
∑

E∈Th
(K∥∇v∥2E + ∥

√
α v∥2E + τE∥b · ∇v∥2E) . (3.2.10)

We state the local inverse inequality to be used later; there exists a constant Cl such that,

∥∇ ·K∇vh∥0,E ⩽ Cl h
−1
E ∥K∇vh∥0,E ∀ vh ∈ Vh and E ∈ Th. (3.2.11)
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For analysis, we assume the following constraints on the local SUPG parameter τE :

(G1) ∃ ρ ∈ (0, 3) independent of E ∈ Th such that

(i) KτE C
2
l ⩽

1

2
ρ h2E and (ii) τE α ⩽

1

2
ρ a.e. inΩ,

where Cl is the same constant used in (3.2.11). An optimal choice for τE will be discussed
in error analysis for nonlinear model problem in theorem 3.6.

3.3 Well-posedness of VEM-SUPG formulation

In this section we will show the well-posedness of the VEM-SUPG formulation (3.2.1)
by first showing the coercivity and then the continuity of bilinear form Bvs.

Lemma 3.1. (Coercivity) The bilinear form Bvs(·, ·) satisfies the following estimate,

Bvs(vh, vh) ⩾ Cρ ∥|vh∥|2 ∀ vh ∈ Vh, (3.3.1)

with Cρ = min
{
β∗, η∗,

(
1−

√
ρ

2

)}
> 0.

Proof. We estimate the terms of Bvs(·, ·) one by one. We have,

ah(vh, vh) =
∑

E∈Th

[
(KΠ0

p−1∇vh,Π0
p−1∇vh)E + τE(b ·Π0

p−1∇vh,b ·Π0
p−1∇vh)E

+(K + τEb2
E)S

E
1

(
(I − Π∇

k )vh, (I − Π∇
k )vh

)]
≥

∑
E∈Th

[
K∥Π0

k−1∇vh∥2E + τE∥b · Π0
k−1∇vh∥2E + β∗(K + τEb2

E)∥(I − Π∇
k )∇vh∥2E

]
≥

∑
E∈Th

[
K∥Π0

k−1∇vh∥2E + τE∥b · Π0
k−1∇vh∥2E + β∗(K + τEb2

E)∥(I − Π0
k−1)∇vh∥2E

]
.

Similarly, (3.3.2)

bh(uh, vh) ≥
∑

E∈Th
α
(
∥Π0

pvh∥2E + η∗∥(I − Π0
k)vh∥2E

)
. (3.3.3)

Note that ch(vh, vh) = 0. Next, estimating the last term of Bvs, we have for some λ > 0,

|dh(vh, vh)| ⩽
∑

E∈Th
|τE
(
−∇ ·KΠ0

p−1∇vh + αΠ0
pvh,b ·Π0

p−1∇vh
)
E
|

⩽
∑

E∈Th
τE ∥ − ∇ ·KΠ0

p−1∇vh + αΠ0
pvh∥0,E ∥b ·Π0

p−1∇vh∥0,E

⩽
∑

E∈Th

(
τE
2λ

∥ − ∇ ·KΠ0
p−1∇vh∥2E + τE

2λ
∥αΠ0

pvh∥2E + λ τE
2 ∥b ·Π0

p−1∇vh∥2E
)
.
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Applying the inverse inequality (3.2.11), (G1) and then choosing λ =
√
ρ, we get,

|dh(vh, vh)| ⩽
∑

E∈Th

(
ρ
2λ
K∥Π0

p−1∇vh∥2E +
ρ
2λ

∥
√
αΠ0

pvh∥2E + λ τE
2 ∥b ·Π0

p−1∇vh∥2E
)

⩽
∑

E∈Th

(√
ρ
2 K∥Π0

p−1∇vh∥2E +

√
ρ
2 ∥

√
αΠ0

pvh∥2E +

√
ρ τE
2 ∥b ·Π0

p−1∇vh∥2E
)
.

(3.3.4)

Combining the estimates (3.3.2), (3.3.3) and (3.3.4), we have,

Bvs(vh, vh) ⩾

(
1−

√
ρ

2

) ∑
E∈Th

[
(K∥Π0

k−1∇vh∥2E + τE∥b · Π0
k−1∇vh∥2E + α∥Π0

pvh∥2E
]
+∑

E∈Th

[
β∗(K + τEb2

E)∥(I − Π0
k−1)∇vh∥2E + η∗ α∥(I − Π0

k)vh∥2E
]

⩾min
{
β∗, η∗,

(
1−

√
ρ

2

)} ∑
E∈Th

(
K∥∇vh∥2E + τE∥b · ∇vh∥2E + α∥vh∥2E

)
.

Thus, we obtain the estimate (3.3.1), proving the coercivity.

Lemma 3.2. For u ∈ H1
0 (Ω) with (∇ ·K∇u)|E ∈ L2(E), ∀E ∈ Th and vh ∈ Vh we have,

|Bvs(u, vh)| ⩽ Cvs γ(u) ∥|vh∥|, (3.3.5)

where Cvs is a constant depending on K, b, andα, but independent of h and τE , and

γ(u) := ∥|u∥|+
( ∑

E∈Th
min

{
1

τE
;

b2
E

K0

}
∥u∥2E

) 1
2
. (3.3.6)

Proof. Using the inequality (3.2.8), we estimate,

|ah(u, vh)| ⩽
∑

E∈Th

[ ∣∣ (KΠ0
p−1∇u,Π0

p−1∇vh)E
∣∣+ ∣∣τE(b ·Π0

p−1∇u,b ·Π0
p−1∇vh)E

∣∣
+ β∗(K + τEb2

E)∥(I − Π∇
k )∇u∥0,E ∥(I − Π∇

k )∇vh∥0,E
]

⩽
∑

E∈Th
(1 + β∗)K∥∇u∥0,E∥∇vh∥0,E +

(
b2
EτE
K0

)
(1 + β∗)K∥∇u∥0,E∥∇vh∥0,E

⩽ (1 + β∗)
∑

E∈Th
K∥∇u∥0,E∥∇vh∥0,E +

(
b2
E τE α

K0 α

)
K∥∇u∥0,E∥∇vh∥0,E

⩽ (1 + β∗)

(
1 + max

E∈Th

(
b2
E ρ

K0 α

)) ∑
E∈Th

K∥∇u∥0,E∥∇vh∥0,E (use (ii) of (G1))
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Using Holder’s inequality, we get,

|ah(u, vh)| ⩽(1 + β∗)

(
1 + max

E∈Th

(
b2
E ρ

K0 α

))
∥|u∥| ∥|vh∥|. (3.3.7)

Similarly using (3.2.9), we have,

|bh(u, vh)| ⩽ (1 + η∗) ∥|u∥| ∥|vh∥|. (3.3.8)

Consider the third term |ch(u, vh)|, we note,

|ch(u, vh)| ⩽
1

2

∑
E∈Th

|(b ·Π0
p−1∇u,Π0

pvh)E)|+
1

2

∑
E∈Th

|(Π0
pu,b ·Π0

p−1∇vh)E|. (3.3.9)

Estimating the first term of (3.3.9), we get,

1

2

∑
E∈Th

|(b ·Π0
p−1∇u,Π0

pvh)E)| ⩽
1

2

∑
E∈Th

(
bE√
K0 α

)√
K∥∇u∥0,E

√
α∥vh∥0,E

⩽ max
E∈Th

(
bE√
K0α

)
∥|u∥| ∥|vh∥|. (3.3.10)

The second term of (3.3.9) is estimated in two different ways namely,

1

2

∑
E∈Th

|(Π0
pu,b ·Π0

p−1∇vh)E| ⩽
1

2

∑
E∈Th

[
1

√
τE

∥u∥0,E bE
√
τE α√

K0 α

√
K∥∇vh∥0,E

]
⩽
(
max
E∈Th

bE
√
ρ

√
K0 α

)( ∑
E∈Th

1

τE
∥u∥2E

) 1
2∥|vh∥|. (3.3.11)

1

2

∑
E∈Th

|(Π0
pu,b ·Π0

p−1∇vh)E| ⩽
1

2

∑
E∈Th

∥u∥0,E
bE√
K0

√
K∥∇vh∥0,E

⩽
( ∑

E∈Th

b2
E

K0

∥u∥2E
) 1

2∥|vh∥|. (3.3.12)

Combining the estimates in (3.3.10),(3.3.11) and (3.3.12) we have,

|ch(u, vh)| ⩽ max
E∈Th

(
bE√
K0α

)
∥|u∥| ∥|vh∥| +

max

(
1;max

E∈Th

bE
√
ρ

√
K0α

)( ∑
E∈Th

min

{
1
τE
;

b2
E

K0

}
∥u∥2E

) 1
2

|||vh|||. (3.3.13)
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Now, we estimate,

|dh(u, vh)| ⩽
∑

E∈Th
(τE∥ − ∇ ·KΠ0

p−1∇u∥0,E + τE∥αΠ0
pu∥0,E)∥b ·Π0

p−1∇vh∥0,E

⩽
∑

E∈Th
(τE∥ − ∇ ·KΠ0

p−1∇u∥0,E∥b ·Π0
p−1∇vh∥0,E)

+ (τE∥αΠ0
pu∥0,E∥b ·Π0

p−1∇vh∥0,E)

Using the inverse inequality (3.2.11) and the assumptions in (G1), we get,

|dh(u, vh)| ⩽
∑

E∈Th

(
ρbE

2
√
K0 α

)(
K∥∇u∥0,E∥∇vh∥0,E +

√
α∥u∥0,E

√
K∥∇vh∥0,E

)
⩽ max

E∈Th

(
ρbE√
K0 α

)
∥|u∥| ∥|vh∥|. (3.3.14)

Let B := max
E∈Th

bE and C := (K0α )−
1
2 . Then, combining the estimates (3.3.7), (3.3.8),

(3.3.13) and (3.3.14) we obtain the result (3.3.5) with

Cvs = max
{
[(1 + β∗)(1 + ρB2C2) + (1 + η∗) + BC + ρBC] ; max(1 ,

√
ρBC)

}
.

Hence the lemma is proved.

3.4 VEM-SUPG with shock-capturing

In this section we formulate the shock-capturing technique for the VEM discretization
of our model problem (3.1.1) and discuss the results concerning the proof of existence of
discrete solution. Consider the following term,

Tsc(w;u, v) =
∑

E∈Th

(
δE(w)Nsc Π

0
p−1∇u,Π0

p−1∇v
)
E

+∥Nsc∥∞ δE(Π
0
0w)S

E
1

(
(I − Π∇

k )u, (I − Π∇
k )v
)
. (3.4.1)

where, Nsc is a symmetric positive definite matrix function such that ∥(Nsc)(ij)∥∞,Ω ≤ 1

and δE(w) is chosen satisfying the following condition:

(G2) We suppose that δE(w) depends continuously on w and

0 ≤ δE(w) ≤ME(hE) with lim
h→0

ME(h) = 0. (3.4.2)
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We consider the following shock-capturing formulation, find uh ∈ V p
h such that,

Bvs(uh, vh) + Tsc(uh;uh, vh) = Fvs(vh) ∀ vh ∈ V p
h , (3.4.3)

Let us consider the following two choices for δE and Nsc concerning addition of the
isotropic and anisotropic diffusion.

Case I : Anisotropic diffusion

δE(w) =
σE(w)∥Lsc(w)− f∥0,E

κ+ ∥∇Π∇
p w∥0,E

, Nsc :=

I − b ⊗ b
|b| ,b ̸= 0

0 ,b = 0
(3.4.4)

Case II : Isotropic diffusion

δE(w) =
σE(w)∥Lsc(w)− f∥2E[

κ+
(
∥Π0

pw∥2E + ∥∇Π∇
p w∥2E

) 1
2

]2 , Nsc := I (3.4.5)

where, σE(w) ≥ 0, κ ≥ 0 are chosen such that δE satisfies (3.4.2), and

Lsc(w) := −∇ · (KΠ0
p−1∇w) + b · Π0

p−1∇w + αΠ0
pw. (3.4.6)

We make a particular choice for σE as follows (refer [55]),

σE(w) := l0hE max

{
0, β − 2K

hER∗
E(w)

}
, (3.4.7)

where, R∗
E(w) :=

∥Lsc(w)− f∥0,E[
κ+

(
∥Π0

pw∥2E + ∥∇Π∇
p w∥2E

) 1
2

] and parameters { l0, κ, β } ⊂ (0, 1).

Remark 3.1. The effect of δE(w) becomes significant only when the residual ∥Lsc(w) −
f∥0,E is very large.

Remark 3.2. The limiter function δE depends on uh. Thus with shock-capturing term in
equation (3.4.1), the discrete formulation reduces to nonlinear system of equations. This
significantly increases the computational cost of solving a linear model problem.

Now, we proceed to prove the existence of a numerical solution for the scheme (3.4.3)
by the following theorem.

Theorem 3.1. The shock-capturing scheme (3.4.3) has at least one solution uh ∈ V p
h
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satisfying the condition,

∥|uh∥|2 + Tsc(uh;uh, uh) ⩽ C ∥|f∥|2∗ (3.4.8)

with the dual norm |||f |||∗ := sup
vh∈V p

h \{0}

Fvs(vh)
|||vh|||

.

Proof. We use a variant of Brouwer’s fixed point theorem (see [66], II, Lemma 1.4) to show
the existence of a solution.

For this, let us define an inner product on V p
h as ⟨vh, vh⟩ := (∇vh,∇vh) and let P :

V p
h −→ V p

h be an operator, such that,

⟨Puh, vh⟩ = (∇Puh,∇vh) = Bvs(uh, vh) + Tsc(uh;uh, vh)− Fvs(vh). (3.4.9)

Using lemma (3.1) and Young’s inequality we get,

⟨Pvh, vh⟩ =Tsc(vh; vh, vh) +Bvs(vh, vh)− Fvs(vh)

⩾Tsc(vh; vh, vh) + Cρ|||vh|||2 − |||f |||∗ |||vh|||

⩾Tsc(vh; vh, vh) +
Cρ

2
|||vh|||2 −

1

2Cρ

|||f |||2∗ (3.4.10)

We conclude that ⟨Pvh, vh⟩ > 0 for all vh ∈ Vh with ⟨vh, vh⟩ = ∥∇vh∥2 > C̃ Cρ |||f |||∗, for
some constant C̃ > 0. Clearly, Fvs is continuous. Also lemma 3.2 and the assumption (G2)
imply the continuity of Bvs and Tsc. Thus, we get that the operator P is continuous. Then,
using a variant of Brouwer’s fixed point theorem (see [66]) we get atleast one solution
uh satisfying P (uh) = 0. This inturn implies the existence of a solution of the discrete
problem and finally the estimate (3.4.8) is obtained by using P (uh) = 0 in the inequality
(3.4.10).

Remark 3.3. We have shown the existence of atleast one solution for the shock-capturing
technique, but unfortunately the uniqueness result is still open. If we assume that δE is
Lipschitz continuous then using Banach fixed point theorem we can prove the uniqueness.
But this condition restricts the choice of δE for practical applications. On the otherhand, us-
ing the result of Schauder fixed point theorem [67] a corresponding result using Brouwer’s
fixed point theorem with specific assumptions on δE the uniqueness result can be proved.
Once again this imposes severe restrictions on δE .

Remark 3.4. We would also like to mention that the choice of δE given in equation (3.4.4)
does not satisfy the Lipschitz continuity.
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3.5 Numerical experiments

In this section we illustrate the performance of shock-capturing technique with an ex-
ample. We would like to make the following choice for the stabilization parameter τE
proposed in [54],

τE = min

{
hE
|b|

;
1

|α|
;
h2E
K

}
(3.5.1)

The reduced nonlinear algebraic system of equations can be solved by the application of
inexact Newton-GMRES algorithm [68]. Since this approach is very expensive we consider
solving the scheme (3.4.3) using the following simple iterative technique,

n ∈ N, Bvs(U
n+1, v) + Tsc(U

n;Un+1, v) = Fvs(v) ∀ v ∈ V p
h (3.5.2)

The well-posedness of this iterative technique is discussed in [55].

For our numerical experiment we consider four different type of meshes namely, smoothed
Voronoi, nonconvex polygons, regular hexagons and distorted hexagons respectively shown
in figure 3.1. We use VEM of order k = 1 and k = 2 for our computations.

(a) Smoothed Voronoi (b) Nonconvex polygons (c) Regular hexagons (d) Distorted hexagons

Figure 3.1: Polygonal meshes

3.5.1 Example 1

We consider a stationary linear convection-diffusion problem. Let Ω = (0, 1)2, K =

10−6, b = (−y, x), α = 1, and f ≡ 0, in equation (3.1.1). We specify the discontinuous
boundary conditions as follows : the Dirichlet condition u(x, y) = 1 for x ∈ (1

3
, 2
3
), y = 0

and u(x, y) = 0 on the remaining parts of lower boundary as well as on the right and
upper boundary; assume the homogeneous Neumann condition on the left boundary, ie.
∂u(x,y)

∂n = 0 forx = 0, y ∈ (0, 1), where n is the unit outerward normal. The discontinuous
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profile specified on the boundary is carried over to the characteristic curves and the solution
develops interior layers.

To present our numerical results we denote SUPG with shock-capturing and without
shock-capturing as SUPG-SC and SUPG respectively. We choose the following values in
the equation (3.4.4) as l0 = 0.2, β = 0.7 andκ = 10−4. The iterative scheme (3.5.2) is
used for solving the nonlinear system with tolerance 10−7. We note that the solution has
two interior layers that are efficiently damped by the VEM-SUPG with shock capturing
method on both the orders k = 1 and k = 2. The cross-section plots of the solution at the
left outflow boundary for both SUPG and SUPG-SC are shown in figures 3.2-3.5.

(a) k = 1, h = 1/40 (b) k = 1, h = 1/80

(c) k = 2, h = 1/40 (d) k = 2, h = 1/80

Figure 3.2: Smoothed Voronoi: The cross-section plots of the solution at the left outflow
boundary.
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(a) k = 1, h = 1/40 (b) k = 1, h = 1/80 (c) k = 2, h = 1/40 (d) k = 2, h = 1/80

Figure 3.3: Nonconvex polygons: The cross-section plots of the solution at the left outflow
boundary.

(a) k = 1, h = 1/40 (b) k = 1, h = 1/80 (c) k = 2, h = 1/40 (d) k = 2, h = 1/80

Figure 3.4: Regular hexagons: The cross-section plots of the solution at the left outflow
boundary.

(a) k = 1, h = 1/40 (b) k = 1, h = 1/80 (c) k = 2, h = 1/40 (d) k = 2, h = 1/80

Figure 3.5: Distorted hexagons: The cross-section plots of the solution at the left outflow
boundary.

To compare the results with finite element method we consider the mesh of structured
triangles shown in figure 3.6. We show the cross-section plots of both FEM and VEM at
the left outflow boundary for order k = 1 in figure 3.7. We can observe that VEM performs
similar to FEM in reducing the oscillations along the sharp layers.
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Figure 3.6: Sample structured triangle mesh.

(a) FEM : k = 1, h = 1/40 (b) V EM : k = 1, h = 1/40

(c) FEM : k = 1, h = 1/80 (d) V EM : k = 1, h = 1/80

Figure 3.7: Structured triangle: The cross-section plots of the solution at the left outflow
boundary.

3.5.2 Example 2

In this example we consider the problem (see Example 4.1) discussed in [47]. Let

Ω = (0, 1)2, K = 10−6, b =
1√
5
(1, 2)T with added nonlinear reaction term u4. We
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consider the exact solution as u(x) =
1

2

(
1− tanh

(
2x1 − x2 − 1

4√
5K

))
. This solution ex-

hibits an interior layer with thickness O(
√
K |lnK|). We use Dirichlet boundary values

prescribed by the solution. In order to make a comparison with finite element method we
have considered regular triangular meshes for the numerical computation. We present a
result (see table 3.1) depicting the errors evaluated in |||·||| along with roc i.e., the rate of
convergence. From this we observe that our proposed method performs better than the
method discussed in the paper [47].

Table 3.1: Comparison of errors in |||·||| and the rate of convergence (roc).

Order k = 2.
SC-CD (Table 1,[47]) SUPG-SC (VEM)

h |||·||| roc |||·||| roc
1
4

1.70e-01 ∗ 1.43e-01 ∗
1
8

1.32e-01 0.36 1.02e-01 0.48
1
16

1.13e-01 0.22 7.14e-02 0.52
1
32

9.05e-02 0.32 5.33e-02 0.42
1
64

7.05e-02 0.36 3.85e-02 0.47
1

128
5.37e-02 0.39 2.67e-02 0.53

So far, we have proposed a computable shock-capturing method stabilized VEM for-
mulation of linear convection-diffusion-reaction equation. The resulting discrete scheme
turned out to be nonlinear. Hence to overcome the cost of solving a nonlinear system of
algebraic equations, we have used the simple iterative technique. From the numerical ex-
amples, we observe that the performance of the shock-capturing technique is consistent for
the meshes considered. In particular, the reduction of spurious oscillations by the shock-
capturing terms is much more evident for the VEM of order k = 2.

As mentioned earlier, a lot of practical applications are studied with the help of nonlin-
ear transport equations. In the remaining sections, we perform theoretical and numerical
analysis of the shock-capturing stabilization of VEM for semilinear convection-diffusion-
reaction equations.
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3.6 Semilinear model Problem

Let us consider the following model equation on a bounded domain Ω ⊂ R2 :

−∇ · (D∇u) +
−→
β · ∇u+Ψ(u) = f in Ω,

u = 0 on ∂Ω, (3.6.1)

where u is the solution variable, usually representing concentration of a specific particle
in a medium, D is the diffusion parameter,

−→
β is the convection/velocity field, Ψ(·) is the

reaction term which is a nonlinear function of u and f is the source/sink function of u.

Without loss of generality we let the solution u of (3.6.1) to be non-negative and
bounded above i.e., u0 ≤ u ≤ u1 with u0 ≥ 0. In our analysis we assume that f ∈
L2(Ω), D ∈ L∞(Ω) and

−→
β ∈ [W 1,∞(Ω)]2, with D(x) ≥ D0 > 0, (∇ ·

−→
β )(x) = 0 for a.e

x ∈ Ω. On the nonlinear function Ψ we suppose that

Ψ ∈ C1(R) with Ψ(0) = 0, Ψ ′(s) ≥ Ψ0 > 0 for s ∈ R+. (3.6.2)

The variational formulation of (3.6.1) is given by : Find u ∈ H1
0 (Ω) such that

(D∇u,∇v)Ω + (
−→
β · ∇u, v)Ω + (Ψ(u), v)Ω = (f, v)Ω ∀ v ∈ H1

0 (Ω). (3.6.3)

Under above assumptions, the existence and uniqueness of a solution u ∈ H1
0 (Ω) for (3.6.3)

is shown in [69].

3.7 Shock-capturing virtual element method

Deducing an approximate solution for (3.6.1) in the singularly perturbed case 0 < D ≪
1, is interesting and requires suitable modification of (3.6.3). Under the effect of dominat-
ing convection and/or reaction phenomenon, layers are formed in the solutions and the
variational form (3.6.3) produces solutions with unnecessary oscillations. The shock cap-
turing (SC) technique added to SUPG method captures localised spurious oscillations in
the crosswind direction. Thus we begin by presenting the SUPG and SC stabilized discrete
formulation of (3.6.3) :Find uh ∈ V p

h such that

Asupg(uh, vh) + Asc(uh, vh) = F (vh) ∀vh ∈ V p
h , (3.7.1)
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where,

Asupg(uh, vh) := (D∇uh,∇vh)Ω +
(−→
β · ∇uh, vh

)
Ω
+ (Ψ(uh), vh)Ω

+
∑

E∈Th
τE

(
−D∆uh +

−→
β · ∇uh +Ψ(uh),

−→
β · ∇vh

)
E
,

Asc(uh, vh) :=
∑

E∈Th
( ξE(uh)P

sc ∇uh, ∇vh )E , F (vh) := (f, vh)Ω +
∑

E∈Th
τE
(
f,
−→
β · ∇vh

)
E
.

The parameter τE is a local stabilization term associated with SUPG method. The variable
P sc = ( pscij )

2
i,j=1 denotes a symmetric positive-definite (SPD) matrix function. Also ξE is

a non-negative restricting function defined as ( see [47] ),

ξE(z) := ξE
(
r∗E(z)

)
& r∗E(z) :=

∥ − ∇ ·Π0
p−1D∇z +

−→
β · ∇z +Ψ(z)− f∥0,E

∥z∥1,E + σE
.(3.7.2)

More assumptions and detailed definition of τE, P sc and σE will be discussed in the sequel.

The terms in discrete scheme (3.7.1) are not computable in the VEM approach ( see
sec.3 in [70] ). So with the help of projection operators defined in section 3.1.1, we proceed
to appropriately redefine the scheme (3.7.1).

First we define Avsg(v, w) := a(v, w) + b(v, w) + c(v, w) where,

a(v, w) :=
(
DΠ0

p−1∇v, Π0
p−1∇w

)
Ω
+
∑

E∈Th
τE

(−→
β ·Π0

p−1∇v,
−→
β ·Π0

p−1∇w
)
E

+
∑

E∈Th
(DE + τEβ

2
E)S

E
1

((
I − Π∇

p

)
v,
(
I − Π∇

p

)
w
)
, (3.7.3)

b(v, w) :=
1

2

[ (−→
β ·Π0

p−1∇v, Π0
pw
)
Ω
−
(
Π0

pv,
−→
β ·Π0

p−1∇w
)
Ω

]
+
∑

E∈Th
τE

(
−∇ ·KΠ0

p−1∇v,
−→
β ·Π0

p−1∇w
)
E
, (3.7.4)

c(v, w) :=
(
Ψ̂(Π0

pv), Π
0
pw
)
Ω
+
∑

E∈Th
Ψ0 S

E
2

(
(I − Π0

p)v, (I − Π0
p)w
)

+
∑

E∈Th
τE
(
Ψ̂(Π0

pv),
−→
β ·Π0

p−1∇w
)
E
. (3.7.5)

with DE := sup
x∈E

D(x), D∨
E := inf

x∈E
D(x) and βE := sup

x∈E
∥
−→
β (x)∥0,R2 .

The symmetric bilinear form SE
1 , SE

2 in (3.7.3), (3.7.5) are functions defined on V p
E×V

p
E

ensuring that there exists non-zero positive constants α∗, α∗, µ∗, µ∗, with α∗ ≤ α∗ and
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µ∗ ≤ µ∗, independent of hE , such that,

α∗(∇uh,∇uh)E ≤ SE
1 (uh, uh) ≤ α∗(∇uh,∇uh)E ∀uh ∈ ker(Π∇

p ), (3.7.6)

µ∗(uh, uh)E ≤ SE
2 (uh, uh) ≤ µ∗(uh, uh)E ∀uh ∈ ker(Π0

p). (3.7.7)

Let us denote,Lz := −∇ · (DΠ0
p−1∇z) +

−→
β · Π0

p−1∇z + Ψ̂(Π0
pz). Next we define,

Avsc(z; v, w) :=
∑

E∈Th

{ (
ξ̂E(z)P

scΠ0
p−1∇v, Π0

p−1∇w
)
E

+gsc(z)S
E
1

((
I − Π∇

p

)
v,
(
I − Π∇

p

)
w
)}

, (3.7.8)

with ξ̂E(z) := ξ̂E
(
R∗

E(z)
)

and R∗
E(z) :=

∥Lz − f∥0,E
∥Π0

pz∥0,E + |Π∇
p z|1,E + σE

. (3.7.9)

The variable σE is a regularisation parameter (see [47]) and the approximation gsc(·) ∈
L∞(Ω) in (3.7.8) is suitably chosen such that, there exists real constants 0 < γ∗ ≤ γ∗

satisfying

γ∗Asc(z;w,w) ≤ Avsc(z;w,w) ≤ γ∗Asc(z;w,w) ∀w ∈ V p
h . (3.7.10)

For our analysis, we assume that the matrix norm ∥P sc∥∞,Ω ≤ 1 and for eachE ∈ Th, there
exists a map ϕE : R+ → R+ such that

lim
s→0

ϕE(s) = 0 and 0 ≤ ξ̂E(v) ≤ gsc(v) ≤ ϕE(hE) ∀v ∈ V p
h . (3.7.11)

The computational choice for gsc(·) will be discussed in the numerical experiment section.

Last we define, Fvsg(w) :=
(
f,Π0

pw
)
Ω
+
∑

E∈Th
τE

(
f,
−→
β ·Π0

p−1∇w
)
E
. (3.7.12)

Then, a discrete virtual element formulation of a general shock capturing scheme combined
with the SUPG stabilization is : Find uh ∈ V p

h such that

Avsg(uh, vh) + Avsc(uh;uh, vh) = Fvsg(vh) ∀vh ∈ V p
h . (3.7.13)

Remark 3.5. From the definition of ξ̂E(z) in (3.7.9) we note that the contribution ofAsc(z; ·, ·)
is restricted to those elements E ∈ Th where the residual (Lz−f ) is significant. The vari-
ants of the shock capturing method are determined by the choice of definition for P sc in
(3.7.8). In this paper we will discuss two variants of SC technique in section 3.9.
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Remark 3.6. If sometimes Ψ ′ is not bound above, then we can consider the modification
(2.18) in [47] for Ψ in the subsequent analysis. Noting that Ψ ′ is continuous and bounded
on compact intervals of u implies Ψ is Lipschitz continuous, say with some Lipschitz con-
stant LΨ > 0.

3.8 Preliminary Analysis

We introduce the norm

|||v|||2 :=
∑

E∈Th

(
∥
√
D∇v∥20,E + Ψ0 ∥v∥20,E + τE ∥

−→
β .∇v∥20,E

)
.

Consider the hp-inverse estimate ( see (4.2) in [69] ) satisfied by each vh ∈ V p
h ,

∥∆vh∥0,E ≤ cinv p
2 h−1

E |vh|1,E, (3.8.1)

where, cinv > 0 is independent of v, E, hE and p. Now we state the coercivity result satisfied
by Avsg(·, ·).

Lemma 3.3. Let us assume the following condition on τE for all E ∈ Th :

0 ≤ τE ≤ 1

4
min

{
h2E

p4c2invDE

,
Ψ0

L2
Ψ

}
. (3.8.2)

Then we have Avsg(w,w) ≥ θ |||w|||2 ∀w ∈ V p
h , where θ = min

{
1
2
, α∗, µ∗

}
.

Proof. Let w ∈ V p
h be arbitrary. Consider a(w,w) in (3.7.3). Using (3.7.6), the inequality

∥(I −Π0
p−1)∇uh∥0,E ≤ ∥∇(I − Π∇

p )uh∥0,E ( see [12] ) and definition of DE , we obtain

a(w,w) ≥
∑

E∈Th

(
∥
√
DΠ0

p−1∇w∥20,E +DE α∗∥(I −Π0
p−1)∇w∥20,E

+τE∥
−→
β ·Π0

p−1∇w∥20,E + τEβ
2
E α∗∥(I −Π0

p−1)∇w∥20,E
)

≥
∑

E∈Th

(
∥
√
DΠ0

p−1∇w∥20,E + α∗∥
√
D(I −Π0

p−1)∇w∥20,E

+τE∥
−→
β ·Π0

p−1∇w∥20,E + α∗τE∥
−→
β · (I −Π0

p−1)∇w∥20,E
)
. (3.8.3)

Next we consider b(w,w) in (3.7.4). Using Cauchy-Schwarz inequality, we have
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|b(w,w)| =
∣∣∣0 + ∑

E∈Th
τE

(
−∇ · DΠ0

p−1∇w,
−→
β ·Π0

p−1∇w
)
E

∣∣∣
≤

∑
E∈Th

τE∥∇ · DΠ0
p−1∇w∥0,E ∥

−→
β ·Π0

p−1∇w∥0,E.

Using the inverse estimate (3.8.1) and 0 ≤ τE ≤ 1

4

h2E
p4c2invDE

, we get,

∥∇ · DΠ0
p−1∇w∥0,E ≤ 1

2
√
τE

∥
√
DΠ0

p−1∇w∥0,E. (3.8.4)

Then using (3.8.4) and Young’s inequality for products we obtain,

|b(w,w)| ≤
∑

E∈Th

( 1√
2
∥
√
DΠ0

p−1∇w∥0,E
) (√

τE√
2
∥
−→
β ·Π0

p−1∇w∥0,E
)

≤ 1

4

∑
E∈Th

(
∥
√
DΠ0

p−1∇w∥20,E + τE ∥
−→
β ·Π0

p−1∇w∥20,E
)

Thus, b(w,w) ≥ −1

4

∑
E∈Th

(
∥
√
DΠ0

p−1∇w∥20,E + τE∥
−→
β ·Π0

p−1∇w∥20,E
)
. (3.8.5)

Next we consider c(w,w) in (3.7.5). First we note, using Ψ(0) = 0, Lipschitz continuity
of Ψ and Ψ′(s) ≥ Ψ0, s ∈ R+, we obtain

(
Ψ(Π0

pw),Π
0
pw
)
=
(
Ψ(Π0

pw)−Ψ(0),Π0
pw
)
≥
(
Ψ0Π

0
pw,Π

0
pw
)
≥ Ψ0

2

∑
E∈Th

∥Π0
pw∥20,E.

(3.8.6)
Using the estimates (3.8.6) and (3.7.7) we get

c(w,w) ≥
∑

E∈Th

( Ψ0

2
∥Π0

pw∥20,E + µ∗Ψ0∥(I − Π0
p)w∥20,E

)
+
∑

E∈Th
τE

(
Ψ(Π0

pw),
−→
β ·Π0

p−1∇w
)
E︸ ︷︷ ︸

=I

.

Applying Cauchy-Schwarz inequality, Lipschitz continuity of Ψ(·), 0 ≤ τE ≤ Ψ0

4L2
g

and
Young’s inequality for products, we get,

|I| ≤ 1

4

∑
E∈Th

(
Ψ0 ∥Π0

pw∥20,E + τE ∥
−→
β · Π0

p−1∇w∥20,E
)
.

∴ c(w,w) ≥
∑

E∈Th

( Ψ0

2
∥Π0

pw∥20,E + µ∗Ψ0∥(I − Π0
p)w∥20,E − 1

4
τE ∥

−→
β · Π0

p−1∇w∥20,E
)
. (3.8.7)
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Substituting the results (3.8.3), (3.8.5), (3.8.7) into Avsg(w,w) = a(w,w) + b(w,w) +

c(w,w), we obtain Avsg(w,w) ≥ min
{

1
2
, α∗, µ∗

}
∥|w∥| for all w ∈ V p

h .

We shall show the existence of a discrete solution for the scheme (3.7.13) using the
result stated in the following proposition (see [50]). Hereafter C denotes a generic positive
constant independent of hE , h, which takes different values at different incidents.

Proposition 3.1. Let H be a finite dimensional Hilbert space with inner product ⟨·, ·⟩H and

norm ∥ · ∥H . Let Q : H → H be a continuous map. If there exists k > 0 such that,

⟨Q(w), w⟩H > 0, ∀w ∈ H with ∥w∥H = k, then ∃ a z ∈ H such that Q(z) = 0 and

∥z∥H ≤ k.

Remark 3.7. For sake of completeness we recall remark 4.1 in [69] concisely. We define
⟨wh, vh⟩⋆ =

∑
E∈Th (∇wh,∇vh)E ∀wh, vh ∈ V p

h , and ∥ · ∥⋆ := ⟨·, ·⟩
1
2
⋆ . Then, V p

h with inner
product ⟨·, ·⟩⋆ is a finite dimensional Hilbert space. Also there exists constants k1, k2 > 0,
such that, ∀vh ∈ V p

h , k1∥vh∥⋆ ≤ |||vh||| ≤ k2∥vh∥⋆.

Theorem 3.2. (Existence) Let the assumptions on (3.6.1) and (3.8.2) be satisfied. We as-

sume the function ξ̂(z) in (3.7.8) is continuous w.r.t z. Then there exists a solution uh ∈ V p
h

solving (3.7.13) and satisfying the inequality

∥uh∥2⋆ + γ∗
∑

E∈Th
∥
√
ξ̂E(uh)(P

sc)
1
2 ∇uh∥20,E ≤ C ∥f∥0, (3.8.8)

where γ∗ is the constant established in (3.7.10).

Proof. Using Riesz representation theorem, we consider a well-defined mappingQ : V p
h →

V p
h defined such that

⟨Q(wh), vh⟩⋆ = Avsg(wh, vh) + Avsc(wh;wh, vh)− Fvsg(vh) ∀vh ∈ V p
h . (3.8.9)

We show that Q is a continuous map on V p
h . For arbitrary zh, yh ∈ V p

h , let us denote
χ := zh − yh and Qχ := Q(zh)−Q(yh). Then,

∥Qχ∥2⋆ = Avsg(zh,Qχ)− Avsg(yh,Qχ)︸ ︷︷ ︸
=I

+Avsc(zh; zh,Qχ)− Avsc(yh; yh,Qχ)︸ ︷︷ ︸
=II

. (3.8.10)

Using (3.6.2) and Theorem 4.1 of [69] , we have a constant C > 0 such that

I := Avsg(zh,Qχ)− Avsg(yh,Qχ) ≤ C ∥zh − yz∥⋆ ∥Qχ∥⋆. (3.8.11)
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Next, II = Avsc(zh; zh,Qχ)− Avsc(zh; yh,Qχ)︸ ︷︷ ︸
=II1

+Avsc(zh; yh,Qχ)− Avsc(yh; yh,Qχ)︸ ︷︷ ︸
=II2

.

Now, consider

II1 =
∑

E∈Th

{(
ξ̂E(zh)P

sc Π0
p−1∇χ, Π0

p−1∇Qχ

)
E
+ gsc(zh)S

E
1

((
I − Π∇

p

)
χ,
(
I − Π∇

p

)
Qχ

)}
.

Using the continuity of ξ̂, Cauchy-Schwarz inequality and (3.7.6) we get

II1 ≤ C ∥zh∥⋆ ∥χ∥⋆ ∥Qχ∥⋆ + ∥gsc(zh)∥∞,Ω α
∗ ∥χ∥⋆ ∥Qχ∥⋆.

≤ C ∥χ∥⋆ ∥Qχ∥⋆ = C ∥zh − yh∥⋆ ∥Qχ∥⋆. (3.8.12)

Using the generalised Hölder’s inequality (with 1
∞ = 0), continuity of ξ̂ and Poincaré

inequality we obtain

II2 =
∑

E∈Th

( [
ξ̂E(zh)− ξ̂E(yh)

]
P scΠ0

p−1∇yh, Π0
p−1∇Qχ

)
E

≤ C ∥ξ̂E(zh)− ξ̂E(yh)∥0,Ω ∥Π0
p−1∇yh∥∞,Ω ∥Π0

p−1∇Qχ∥0,Ω
≤ C ∥zh − yh∥0,Ω ∥Π0

p−1∇yh∥∞,Ω ∥Qχ∥⋆ ≤ C ∥zh − yh∥⋆ ∥Qχ∥⋆. (3.8.13)

Substituting the results (3.8.11),(3.8.12),(3.8.13) into (3.8.10) we get

∥Q(zh)−Q(yh)∥⋆ ≤ C ∥zh − yh∥⋆ ∀zh, yh ∈ V p
h . (3.8.14)

Thus continuity of Q is established.

Next we bound Fvsg(·) in (3.7.12) in terms of ∥| · ∥| as follows,

Fvsg(vh) =
∑

E∈Th

(
(f,Π0

pvh)E + τE

(
f,
−→
β ·Π0

p−1∇vh
)
E

)
≤

∑
E∈Th

[
∥f∥0,E∥Π0

pvh∥0,E + τE∥f∥0,E∥
−→
β ·Π0

p−1∇vh∥0,E
]

≤
∑

E∈Th

∥f∥0,E
Ψ0

Ψ0 ∥vh∥0,E +
∑

E∈Th τE∥f∥0,E
βE√
D∨

E

∥
√
D∇vh∥0,E.

≤ Cρ ∥f∥0,Ω |||vh|||, ( Use Hölders’ ineq. & τE ≤ Ψ0

L2
Ψ

) (3.8.15)

where Cρ = (1/Ψ0) + (Ψ0/L
2
Ψ )
{
max
E∈Th

(
βE/

√
D∨

E

)
.

Using a property of SPD matrix P sc, Lemma 3.3 and (3.8.15), for vh ∈ V p
h we get,
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⟨Q(vh), vh⟩⋆ = Avsg(vh, vh) + Avsc(vh; vh, vh)− Fvsg(vh) ≥ θ|||vh|||2 − Cρ ∥f∥0,Ω |||vh|||,

where θ = min{1/2, α∗, µ∗ }. Using the inequality
m√
α

√
αn ≤ m2

α
+ αn2 (choosing

α =
θ

2
) for the term Cρ∥f∥0,Ω |||vh||| and Remark 3.7 we get,

⟨Q(vh), vh⟩⋆ ≥ θ

2
|||vh|||2 −

2C2
ρ

θ
∥f∥20,Ω ≥ k21θ

2
∥vh∥2⋆ −

2C2
ρ

θ
∥f∥20,Ω. (3.8.16)

For given f and a constant CB =
2Cρ

k1θ
, let B = {wh ∈ V p

h : ∥wh∥⋆ > CB∥f∥0,Ω}.
Thus using the estimate (3.8.16) we conclude that ⟨Q(vh), vh⟩⋆ > 0 for all vh ∈ B. Now
( thanks to remark 3.7 ) the proposition 3.1 guarantees that there exists uh ∈ V p

h \ B such
that Q(uh) = 0 and hence implies uh is a solution for the discrete scheme (3.7.13). Using
(3.8.9), (3.7.10) and (3.8.16), we also note

⟨Q(uh), uh⟩⋆ ≥ γ∗Asc(uh;uh, uh) +
θ

2
|||uh|||2 −

2C2
ρ

θ
∥f∥20,Ω. (3.8.17)

In (3.8.17) using Q(uh) = 0 we obtain the desired estimate (3.8.8).

Remark 3.8. The following estimates involving operators Π0
p,Π∇

p discussed in [12] will be
used throughout in our analysis.

For vh ∈ V p
h any E ∈ Th,

∥Π0
p−1∇vh∥0,E ≤ ∥∇vh∥0,E. (3.8.18)

∥Π0
pvh∥0,E ≤ ∥vh∥0,E. (3.8.19)

∥∇(I − Π∇
p )vh∥0,E ≤ ∥∇vh∥0,E. (3.8.20)

∥(I − Π0
p)vh∥0,E ≤ ∥vh∥0,E. (3.8.21)

Lemma 3.4. Let τE satisfy (3.8.2). Consider w ∈ H1
0 (Ω) with (∇ · (D∇w))|E ∈ L2(E).

Then for all vh ∈ V p
h , we have a(w, vh) + b(w, vh) ≤ C Θ(w) ∥|v∥|, where,

Θ(w) :=

{[
(1 + α∗)max

E∈Th

(DE + τEβ
2
E

D∨
E

)
+max

E∈Th

βE
√
DEτE

2D∨
E

+max
E∈Th

( βE√
D∨

EΨ

) ]
∥|w∥|

+
( ∑

E∈Th

min
{ 1

τE
;
β2
E

D∨
E

}
∥w∥20,E

) 1
2

}
(3.8.22)
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Proof. Consider the term a(w, vh). Using Cauchy-Schwarz inequality, (3.7.6), (3.8.18),
(3.8.20), Hölder’s inequality and definition of ∥| · ∥|, we obtain

a(w, vh) ≤
∑

E∈Th

(DE

D∨
E

∥
√
D∇w∥0,E ∥

√
D∇vh∥0,E +

τEβ
2
E

D∨
E

∥
√
D∇w∥0,E ∥

√
D∇vh∥0,E

)
+
∑

E∈Th

((DE + τEβ
2
E

D∨
E

)
α∗∥

√
D∇w∥0,E ∥

√
D∇vh∥0,E

)
≤ (1 + α∗)max

E∈Th

(DE + τEβ
2
E

D∨
E

) ∑
E∈Th

∥
√
D∇w∥0,E ∥

√
D∇vh∥0,E

≤ (1 + α∗)max
E∈Th

(DE + τEβ
2
E

D∨
E

)( ∑
E∈Th

∥
√
D∇w∥20,E

) 1
2
( ∑

E∈Th
∥
√
D∇vh∥20,E

) 1
2

≤ (1 + α∗)max
E∈Th

(DE + τEβ
2
E

D∨
E

)
∥|w∥| ∥|vh∥|. (3.8.23)

Next we estimate the term b(w, vh). Using triangle inequality and Cauchy-Schwarz in-
equality, we get,

b(u, vh) ≤ 1

2

∑
E∈Th

∥
−→
β ·Π0

p−1∇w∥0,E ∥Π0
pvh∥0,E +

1

2

∑
E∈Th

∥Π0
pw∥0,E ∥

−→
β ·Π0

p−1∇vh∥0,E

+
∑

E∈Th
τE ∥∇ · DΠ0

p−1∇w∥0,E ∥
−→
β ·Π0

p−1∇vh∥0,E := I1 + I2 + I3. (3.8.24)

Using (3.8.18), (3.8.19) and Hölder’s inequality we get,

I1 ≤
∑

E∈Th

βE√
D∨

E

∥
√
D∇w∥0,E

√
Ψ√
Ψ
∥vh∥0,E ≤ max

E∈Th

( βE√
D∨

EΨ

)
|||w||| |||vh|||. (3.8.25)

We derive two distinct bounds for the term I2. First, using (3.8.18), (3.8.19), we have,

I2 ≤
∑

E∈Th
∥w∥0,E

( βE√
D∨

E

)
∥
√
D∇vh∥0,E ≤

( ∑
E∈Th

β2
E

D∨
E

∥w∥20,E

) 1
2

|||vh|||. (3.8.26)

Second, using (3.8.18), (3.8.19), Hölder’s inequality and τE ≤ (Ψ0/L
2
Ψ) we get

I2 =
∑

E∈Th

1
√
τE

∥w∥0,E
√
τE

βE√
D∨

E

∥
√
D∇vh∥0,E

≤
( ∑

E∈Th

1

τE
∥w∥20,E

) 1
2
( ∑

E∈Th

(τEβ2
E

D∨
E

)
∥
√
D∇vh∥20,E

) 1
2 ≤

( ∑
E∈Th

1

τE
∥w∥20,E

) 1
2
C̃|||vh|||,

(3.8.27)
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where C̃ = max
E∈Th

(
Ψ0 β

2
E

L2
ΨD∨

E

) 1
2

. Thus, combining (3.8.26) and (3.8.27) we obtain,

I2 ≤
( ∑

E∈Th
min

{ 1

τE
;
β2
E

D∨
E

}
∥w∥20,E

) 1
2
max{1, C̃} |||vh|||. (3.8.28)

Using (3.8.4), (3.8.18) and Hölder’s inequality we get

I3 ≤
∑

E∈Th
∥
√
DΠ0

p−1∇w∥0,E
√
τE
2

βE∥Π0
p−1∇vh∥0,E

≤
∑

E∈Th

βE
√
DEτE

2D∨
E

∥
√
D∇w∥0,E ∥

√
D∇vh∥0,E

≤
(
max
E∈Th

βE
√
DEτE

2D∨
E

)
|||w||| |||vh|||. (3.8.29)

Adding the results in (3.8.23), (3.8.25), (3.8.28) and (3.8.29) proves the claim.

Hereafter, we assume each E ∈ Th is convex. The following hp-virtual interpolation
estimate ( Lemma 4.4 in [69] ) is useful in our analysis.

Proposition 3.2. For E ∈ Th and u ∈ H1
0 (Ω) ∩ Hℓ+1(E), ℓ ∈ N, then there exists a

uI ∈ V p
h , m = min(p, ℓ), satisfying,

∥u− uI∥0,E +
hE
p

|u− uI |1,E ≤ C
hm+1
E

pℓ+1
∥u∥ℓ+1,E, (3.8.30)

Now we prove a convergence result concerning the family of discrete solutions
{uh ∈ V p

h : ∀h > 0 and uh satisfies (3.7.13) }.

Theorem 3.3. Consider the assumptions of theorem 3.2 and (3.7.11). Suppose that Ψ0 θ >

12(LΨ+µ∗Ψ0). Let u ∈ H1
0 (Ω) be the exact solution of (3.6.1) with u|E ∈ Hℓ+1(E), p ≥

ℓ ≥ 1 for all E ∈ Th. Then any sequence {uh}h of solution of (3.7.13) converges strongly

to u in H1
0 (Ω), that is,

lim
h→0

∥|u− uh∥| = 0.

Proof. Consider the VEM discretisation of (3.6.3) : Find U∗
h ∈ V p

h such that

a1(U
∗
h , wh) + a2(U

∗
h , wh) + a3(U

∗
h , wh) =

(
f, Π0

pwh

)
Ω

∀wh ∈ V p
h , (3.8.31)
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where, we define the terms a1(·, ·), a2(·, ·) and a3(·, ·), as follows.

a1(v, w) =
(
DΠ0

p−1∇v, Π0
p−1∇w

)
Ω
+
∑

E∈Th
DES

E
1

((
I − Π∇

p

)
v,
(
I − Π∇

p

)
w
)
.

a2(v, w) = (1/2)
[ (−→

β ·Π0
p−1∇v, Π0

pw
)
Ω
−
(
Π0

pv,
−→
β ·Π0

p−1∇w
)
Ω

]
.

a3(v, w) =
(
Ψ̂(Π0

pv), Π
0
pw
)
Ω
+
∑

E∈Th
Ψ0 S

E
2

(
(I − Π0

p)v, (I − Π0
p)w
)
.

Let U∗
h ∈ V p

h satisfy problem (3.8.31). Define

e := u− uh = (u− U∗
h) + (U∗

h − uh) = η1 + η2.

First let us derive a bound for η1. Let uI ∈ V p
h is the virtual interpolant of u satisfying

(3.8.30), ϑ1 := u− uI and ϑ2 := U∗
h − uI . Then we note η1 = ϑ1 − ϑ2. Note that both u

and U∗
h satisfies (3.8.31). Hence,

a1(η1, vh) + b(η1, vh) + a3(u, vh)− a3(U
∗
h , vh) = 0 ∀vh ∈ V p

h . (3.8.32)

Now using Lemma 3.3 with τE = 0, ∀E ∈ Th and (3.8.32), we bound ϑ2 ∈ V p
h as follows,

θ ∥|ϑ2∥| ≤ a1(ϑ1 − η1, ϑ2) + a2(ϑ1 − η1, ϑ2) + a3(ϑ2, ϑ2)

≤ a1(ϑ1, ϑ2) + a2(ϑ1, ϑ2) + (a3(u, ϑ2)− a3(U
∗
h , ϑ2)) + a3(ϑ2, ϑ2)

≤ a1(ϑ1, ϑ2) + a2(ϑ1, ϑ2) +
(
Ψ(Π0

pu)−Ψ(Π0
pU

∗
h), Π

0
pϑ2

)
Ω

+
∑

E∈Th
Ψ0 S

E
2

(
(I − Π0

p)η1, (I − Π0
p)ϑ2

)
+ a3(ϑ2, ϑ2). (3.8.33)

Using Lemma 3.4 with τE = 0, ∀E ∈ Th and the Young’s inequality
m√
α

√
αn ≤ m2

α
+

αn2 (with α = θ/2), we get

a1(ϑ1, ϑ2) + a2(ϑ1, ϑ2) ≤ C Θ(ϑ1) |||ϑ2||| ≤
2

θ
C (Θ(ϑ1))

2 +
θ

2
|||ϑ2|||2. (3.8.34)

Using Cauchy-Schwarz inequality, Lipschitz continuity of Ψ, (3.8.19) and ab ≤ a2 + b2,
we get

(
Ψ(Π0

pu)−Ψ(Π0
pU

∗
h), Π

0
pϑ2

)
Ω

≤ LΨ ∥η1∥0,Ω ∥ϑ2∥0,Ω

≤ LΨ

Ψ0

∥|η1∥|2 +
LΨ

Ψ0

∥|ϑ2∥|2. (3.8.35)
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Using (3.7.7), (3.8.21), Hölder’s inequality and then inequality ab ≤ a2 + b2 we get

∑
E∈Th

Ψ0 S
E
2

(
(I − Π0

p)η1, (I − Π0
p)ϑ2

)
≤

∑
E∈Th

Ψ0 µ
∗ ∥η1∥0,E ∥ϑ2∥0,E

≤ Ψ0 µ
∗

Ψ0

∥|η1∥|2 +
Ψ0 µ

∗

Ψ0

∥|ϑ2∥|2. (3.8.36)

Estimating a3(ϑ2, ϑ2) similar to (3.8.35)-(3.8.36) we get

a3(ϑ2, ϑ2) ≤
LΨ +Ψ0 µ

∗

Ψ0

∥|ϑ2∥|2. (3.8.37)

Substituting the results (3.8.34)-(3.8.37) into (3.8.33) and simplifying, we obtain

∥|ϑ2∥|2 ≤ Υ1

( 2

θ
C (Θ(ϑ1))

2 +
LΨ +Ψ0 µ

∗

Ψ0

∥|η1∥|2
)
, (3.8.38)

where Υ1 :=
2Ψ0

θΨ0 − 4(LΨ + µ∗Ψ0)
> 0.

Thus, using the estimate (3.8.38), we note

∥|η1∥|2 ≤ 2 ∥|ϑ1∥|2 + 2 ∥|ϑ2∥|2 ≤ Υ2Υ1 (4/θ)C (Θ(ϑ1))
2 + 2Υ2 ∥|ϑ1∥|2, (3.8.39)

where Υ2 :=
θΨ0 − 4(LΨ + µ∗Ψ0)

θΨ0 − 8(LΨ + µ∗Ψ0)
> 0.

Absorbing the coefficient of ∥|ϑ1∥| into the coefficient of Θ(ϑ1) in (3.8.39), we get

∥|η1∥| ≤ C Θ(u− uI). (3.8.40)

From (3.8.22) with τE = 0, ∀E ∈ Th and using (3.8.30), we obtain

∥|η1∥| ≤ C
(
∥|u− uI∥|+ sup

E∈Th

βE√
D∨

E

∥u− uI∥0,Ω
)
≤ C hℓ |u|ℓ+1,Ω. (3.8.41)

Second, we derive a bound for η2. From Lemma 3.3, we obtain

θ ∥|η2∥| ≤ Avsg(η2, η2) ≤ |Avsg(η2, η2)|

= |a(U∗
h , η2)− a(uh, η2) + b(U∗

h , η2)− b(uh, η2) + c(η2, η2)|.
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Expanding the terms, we obtain,

θ ∥|η2∥| ≤ |a1(U∗
h , η2) + a2(U

∗
h , η2)− a(uh, η2) + b(uh, η2) + c(η2, η2)|

+ |
∑

E∈Th
τE

(−→
β ·Π0

p−1∇U∗
h ,

−→
β ·Π0

p−1∇η2
)
E
+ τEβ

2
E S

E
1

((
I − Π∇

p

)
U∗
h ,
(
I − Π∇

p

)
η2
)
|︸ ︷︷ ︸

=I1

+ |
∑

E∈Th
τE

(
−∇ ·KΠ0

p−1∇U∗
h ,

−→
β ·Π0

p−1∇η2
)
E
|︸ ︷︷ ︸

=I2

.

Note that η2 ∈ V p
h , uh solves (3.7.13) and U∗

h satisfy the equation (3.8.31). Therefore,

a1(U
∗
h , η2) + a2(U

∗
h , η2) = (f, Π0

pη2)Ω − a3(U
∗
h , η2), (3.8.42)

a(uh, η2) + b(uh, η2) = Fvsg(η2)− c(uh, η2)− Asc(uh;uh, η2). (3.8.43)

Thus, substituting (3.8.42), (3.8.43) and expanding,

θ ∥|η2∥| ≤ |(f, Π0
pη2)Ω − a3(U

∗
h , η2)− Fvsg(η2) + c(uh, η2) + Asc(uh;uh, η2)|

+|c(η2, η2)|+ I1 + I2

≤ |Asc(uh;uh, η2)|+ |
∑

E∈Th
τE(f,

−→
β ·Π0

p−1∇η2)E|+ |c(η2, η2)|+ I1 + I2

+ |(Ψ(Π0
puh)−Ψ(Π0

pU
∗
h), Π

0
pη2)Ω|+ |Ψ0

∑
E∈Th

SE
2

((
I − Π0

p

)
η2,
(
I − Π0

p

)
η2
)
E
|︸ ︷︷ ︸

=II1

+ |
∑

E∈Th
τE

(
Ψ(uh),

−→
β ·Π0

p−1∇η2
)
E
|︸ ︷︷ ︸

=II2

. (3.8.44)

Using (3.7.11), (3.7.6) and (3.8.21) we obtain

|Asc(uh;uh, η2)| ≤ C
∑

E∈Th
ϕE(hE)∥uh∥1,E ∥η2∥1,E

≤ C max
E∈Th

ϕE(hE)∥uh∥1,Ω ∥η2∥1,Ω. (3.8.45)

From (3.8.2) we have, τE ≤ h2E
p4c2invDE

. (3.8.46)

Using Cauchy-Schwarz’s inequality and (3.8.46), we get,

|
∑

E∈Th
τE(f,

−→
β ·Π0

p−1∇η2)E| ≤ C h2 ∥f∥0,Ω ∥η2∥1,Ω. (3.8.47)
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Using Cauchy-Schwarz’s inequality, assumption Ψ(0) = 0, Lipschitz continuity of Ψ,
(3.7.7), (3.8.20), (3.8.46) and Hölder’s inequality, we obtain

|c(η2, η2)| ≤ (LΨ +Ψ0µ
∗)

Ψ0

∥|η2∥|2 + C h2 ∥η2∥21,Ω. (3.8.48)

Applying Cauchy-Schwarz, (3.8.46), (3.7.6), (3.8.21) and Hölder’s inequality, we get

I1 ≤ C h2 ∥U∗
h∥1,Ω ∥η2∥1,Ω. (3.8.49)

Using Cauchy-Schwarz inequality, (3.8.1), (3.8.46) and Hölder’s inequality, we have

I2 ≤ C h ∥U∗
h∥1,Ω ∥η2∥1,Ω. (3.8.50)

Proceeding similar to inequality (3.8.48), we obtain

II1 + II2 ≤ (LΨ +Ψ0µ
∗)

Ψ0

∥|η2∥|2 + C h2 ∥uh∥1,Ω ∥η2∥1,Ω. (3.8.51)

Substituting the results (3.8.45), (3.8.47)-(3.8.51) into (3.8.44) and simplifying, we obtain

∥|η2∥|2 ≤ C ∥η2∥1,Ω
{
max
E∈Th

ϕE(hE)∥uh∥1,Ω + h2∥f∥0,Ω + h2∥η2∥1,Ω + (h2 + h)∥U∗
h∥1,Ω

}
,

where, C = (C Ψ0)/(θΨ0 − 2(LΨ + θµ∗)) > 0.

Using the equivalence of the norms, ∥| · ∥| and ∥ · ∥1,Ω in the space V p
h we get

∥|η2∥| ≤ C
{
max
E∈Th

ϕE(hE)∥uh∥1,Ω + h2∥f∥0,Ω + h2∥η2∥1,Ω + (h2 + h)∥U∗
h∥1,Ω

}
, (3.8.52)

Note that the norms ∥f∥0,Ω, ∥η2∥1,Ω, ∥uh∥1,Ω, ∥U∗
h∥1,Ω, |u|ℓ+1,Ω are constants and ∥|u−

uh∥| ≤ ∥|η1∥| + ∥|η2∥|. Under the assumption (3.7.11) and letting h → 0 in estimates
(3.8.41) and (3.8.52), we obtain the desired result lim

h→0
∥|u− uh∥| = 0.

3.9 Error Analysis

In this section, we analyse two class of shock-capturing method based on adding isotropic
artificial diffusion and anisotropic artificial diffusion. Error estimates involving rate of con-
vergence is derived for both the SC classes.

We present a hp-polynomial interpolation estimates based on the polynomial mappings
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Π0
p and Π∇

p . To this end, let us consider the following polynomial estimate proved in
Lemma 4.2 in [51].

Proposition 3.3. Consider E ∈ Th and let u ∈ Hs+1(E). Then for each p ∈ N there exists

a projection operator ΠE : Hs+1(E) → Pp(E), ΠE(u) = uπ such that 0 ≤ l ≤ s + 1,

λ = min(p, s),

|u− uπ|l,E ≤ C
hλ+1−l
E

ps+1−l
∥u∥s+1,E. (3.9.1)

Lemma 3.5. Let p ∈ N. For all E ∈ Th and any u ∈ Hs+1(E), s ≤ p, there exists a

constant C independent of E and u such that

∥u− Π0
pu∥0,E ≤ C

(hE
p

)s+1 ∥u∥s+1,E, (3.9.2)

|u− Π∇
p u|1,E ≤ C

(hE
p

)s ∥u∥s+1,E. (3.9.3)

Proof. By the property of operator Π0
p and Cauchy-Schwarz inequality, we note that,

∥u− Π0
pu∥20,E =

(
u− Π0

pu, u− Π0
pu
)
E
=
(
u− Π0

pu, u− uπ
)
E

≤ ∥u− Π0
pu∥0,E ∥u− uπ∥0,E,

where uπ ∈ PP (E) be as in proposition 3.3. Therefore, ∥u − Π0
pu∥0,E ≤ ∥u − uπ∥0,E.

Now applying (3.9.1), we get the desired estimate (3.9.2). Following along similar lines
for the term |u− Π∇

p u|1,E , we obtain (3.9.3).

3.9.1 Adding isotropic diffusion

Consider the term Avsc(·; ·, ·) in (3.7.8). To add isotropic diffusion, we set the parame-
ters P sc and ξ̂(·) in (3.7.8) as follows :

P sc := I and ξ̂E(z) := ρE(z) [R
∗
E(z)]

2, (3.9.4)

where R∗
E(z) is as defined in (3.7.9).

In the error analysis we will encounter a term consisting ofH1 seminorm of the solution
uh ∈ V p

h of discrete scheme (3.7.13) and the virtual element interpolant uI ∈ V p
h of the

exact solution u of (3.6.1). In the following lemma we state this term and show that it is
uniformly bounded with respect to h.
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Lemma 3.6. Consider the assumptions given in Theorem 3.3 and σE be as in (3.7.9). Let

uI ∈ V p
h be the virtual element interpolant of the exact solution u of (3.6.1) and forE ∈ Th

denote NE :=
|uI |1,E

|uh|1,E + σE
. Then there exists a constant C independent of the problem

data and h, such that

max
E∈Th

NE ≤ C. (3.9.5)

Proof. From the Theorem 3.3 and using the equivalence of norms in remark 3.7, we have
that lim

h→0
|u−uh|1,Ω = 0. Consequently, there exists h0 > 0 such that ∀h ≤ h0, we obtain,

|u− uh|1,E ≤ (1/2) |u|1,E ∀E ∈ Th. (3.9.6)

For E ∈ Th, and using (3.2) we note,

|uI |1,E ≤ |u|1,E + |u− uI |1,E ≤ C |u|1,Ω. (3.9.7)

Now using the inequality |a| − |b| ≤ |a− b|, (3.9.6) and (3.9.7), we obtain

NE ≤ C |u|1,Ω
||u|1,E − |u− uh|1,E|+ σE

≤ 2C |u|1,Ω
|u|1,E + σE

≤ C, (3.9.8)

for we note |u|1,Ω is a constant, min
E∈Th

σE ≤ |u|1,E + σE and hence C is a constant indepen-

dent of the data and h.

Theorem 3.4. Let u ∈ H1
0 (Ω) ∩ Hℓ+1(E), ℓ ∈ N be the exact solution of (3.6.1) with

(∇ · D∇u)|E ∈ L2(E) for all E ∈ Th. Suppose the stabilization parameter τE is such that

0 ≤ τE ≤ θ

16
min

{
h2E

p4c2invDE

,
Ψ0

L2
Ψ

}
, (3.9.9)

and let Ψ0 (15θ−2γ∗) > 2(64+3γ∗)(LΨ+µ∗) be satisfied. For a sufficiently small κ > 0,

we suppose that 0 ≤ ξ̂E(wh) ≤ κ τE, ∀wh ∈ V p
h . Then the solution uh ∈ V p

h of (3.7.13)
with (3.9.4) satisfies,

∥|u− uh∥|2 + γ∗
∑

E∈Th
ξ̂E(uh) |u− uh|21,E

≤ C
{
[Θ(u− uI)]

2 +
∑

E∈Th

[
τE β

2
E +DE

] (hE
p

)2ℓ ∥u∥2ℓ+1,E

}
, (3.9.10)
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where uI ∈ V p
h is the virtual interpolant of u as in (3.8.30) and constantC > 0 is dependent

on LΦ, Ψ0, θ, γ
∗, but independent of D, hE .

Proof. Let us denote ζ1 := uh − uI and ζ2 := u− uI . Then u− uh = ζ2 − ζ1.

From lemma 3.3 we obtain

θ ∥|ζ1∥|2 + Avsc(uh; ζ1, ζ1) ≤ Avsg(ζ1, ζ1) + Avsc(uh; ζ1, ζ1)

≤ (a+ b+ c)(uh − uI , ζ1) + Avsc(uh;uh, ζ1)− Avsc(uh;uI , ζ1).

Adding and substractingAvsg(u, ζ1), c(uh, ζ1) and since uh is a solution of (3.7.13), we get

θ ∥|ζ1∥|2 + Avsc(uh; ζ1, ζ1) ≤ (a+ b)(ζ2, ζ1) + c(ζ1, ζ1) + [c(u, ζ1)− c(uh, ζ1)]

+
∑

E∈Th
τE
(
f − L(u),

−→
β ·Π0

k−1∇ζ1
)
E
− Avsc(uh;uI , ζ1). (3.9.11)

Using lemma 3.4 and the inequality
m√
α

√
αn ≤ m2

α
+ αn2 (choosing α =

θ

16
) we get

(a+ b)(ζ2, ζ1) ≤ 16

θ
C(Θ(ζ2))

2 +
θ

16
|||ζ1|||2. (3.9.12)

Using Cauchy-Schwarz inequality, (3.7.7), Ψ(0)=0, Lipschitz continuity of Ψ, we get

c(ζ1, ζ1) ≤
∑

E∈Th

{
∥Ψ̂(Π0

pζ1)− Ψ̂(0)∥0,E∥Π0
pζ1∥0,E + µ∗ ∥(I − Π0

p)ζ1∥20,E

+τE ∥Ψ̂(Π0
pζ1)− Ψ̂(0)∥0,E ∥

−→
β ·Π0

p−1∇ζ1∥0,E
}

≤
∑

E∈Th

{
LΨ ∥ζ1∥20,E + µ∗ ∥ζ1∥20,E + τE βE LΨ ∥ζ1∥0,E ∥∇ζ1∥0,E

}
( use (3.8.19), (3.8.21) )

≤
∑

E∈Th

{ LΨ + µ∗

Ψ0

Ψ0 ∥ζ1∥20,E +

√
θΨ0

4
∥ζ1∥0,E

√
θ

4

βEhE

p2cinv
√
DE

∥∇ζ1∥0,E
}
. ( use (3.9.9) )

Noting p ≥ 1,
1

DE

≤ 1

D∨
E

and for hE ≤ cinvD∨
E

βE
, using Hölder’s inequality, and then using

Young’s inequality for products, we obtain,

c(ζ1, ζ1) ≤ LΨ + µ∗

Ψ0

∥|ζ1∥|2 +
θ

8
∥|ζ1∥|2. (3.9.13)
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Now similar to (3.9.13), we obtain the estimate

c(u, ζ1)− c(uh, ζ1) ≤
LΨ + µ∗

Ψ0

( ∥|u− uh∥|2 + ∥|ζ1∥|2 ) +
θ

16
( ∥|u− uh∥|2 + ∥|ζ1∥|2 ). (3.9.14)

Now we estimate,

I =
∑

E∈Th
τE
(
f − L(u),

−→
β ·Π0

p−1∇ζ1
)
E

=
∑

E∈Th
τE

(
∇ ·K(Π0

p−1∇u−∇u) +
−→
β · (∇u−Π0

p−1∇u) + (Ψ̂(u)− Ψ̂(Π0
pu)),

−→
β ·Π0

k−1∇ζ1
)
E
.

Using Cauchy-Schwarz’s inequality and triangle inequality we get

I ≤
∑

E∈Th

√
τE

(
∥∇ · D (Π0

p−1∇u−∇u)∥0,E + βE∥∇u−Π0
p−1∇u∥0,E

+∥Ψ̂(u)− Ψ̂(Π0
pu)∥0,E

)√
τE βE∥Π0

k−1∇ζ1∥0,E.

Using (3.8.4), Lipschitz continuity of Ψ and (3.8.19), we get

I ≤
∑

E∈Th

(
1
2
∥
√
D(Π0

p−1 − I)∇u∥0,E +
√
τEβE∥(I −Π0

p−1)∇u∥0,E

+
√
Ψ0∥(I − Π0

p)u∥0,E
)√ τE

D∨
E

βE∥
√
D∇ζ1∥0,E.

Using the inequality ∥(I − Π0
p−1)∇vh∥0,E ≤ ∥∇(I − Π∇

p )vh∥0,E ( see [12] ), (3.9.2),

(3.9.3), Hölder’s inequality and the inequality
m√
α

√
αn ≤ m2

α
+ αn2 (choosing α =

θ

16
),

we obtain

I ≤
∑

E∈Th

( √
τEβE

2

√
DE

D∨
E
∥∇(I − Π∇

p )u∥0,E +
τEβ2

E√
D∨

E

∥∇(I − Π∇
p )u∥0,E

+

√
τE
D∨

E

βE
√

Ψ0∥u− Π0
pu∥0,E

)
∥
√
D∇ζ1∥0,E

≤
∑

E∈Th
C
√
τEβE

(hE
p

)ℓ ∥u∥ℓ+1,E ∥
√
D∇ζ1∥0,E

≤
( ∑

E∈Th
C τE β

2
E

(hE
p

)2ℓ ∥u∥2ℓ+1,E

) 1
2
( ∑

E∈Th
∥
√
D∇ζ1∥0,E

) 1
2

≤ C
∑

E∈Th
τE β

2
E

(hE
p

)2ℓ ∥u∥2ℓ+1,E +
θ

16
∥|ζ1∥|2. (3.9.15)
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Let II := |Avsc(uh;uI , ζ1)|. Using Cauchy-Schwarz inequality, (3.7.6) and Hölder’s in-
equality, we get

II ≤
∑

E∈Th
∥(ξ̂(uh)P sc)

1
2Π0

p−1∇uI∥0,E ∥(ξ̂(uh)P sc)
1
2Π0

p−1∇ζ1∥0,E

+
∑

E∈Th
gsc(uh)

1
2∥∇(I − Π∇

p )uI∥0,E gsc(uh)
1
2∥∇(I − Π∇

p )ζ1∥0,E.

≤
(
Υ1

∑
E∈Th

∥(ξ̂(uh)P sc)
1
2Π0

p−1∇uI∥20,E
) 1

2
(
Υ−1

1

∑
E∈Th

∥(ξ̂(uh)P sc)
1
2Π0

p−1∇ζ1∥20,E
) 1

2

+
(
Υ1

∑
E∈Th

gsc(uh)∥∇(I − Π∇
p )uI∥20,E

) 1
2
(
Υ−1

1

∑
E∈Th

gsc(uh)∥∇(I − Π∇
p )ζ1∥20,E

) 1
2
.

Using Young’s inequality for products, (3.8.20) and (3.7.6), we get

II ≤ 2

3
Υ2

∑
E∈Th

(
∥(ξ̂(uh)P sc)

1
2Π0

p−1∇uI∥20,E + gsc(uh)∥∇(I − Π∇
p )uI∥20,E

)
+
3

8
Υ2

∑
E∈Th

(
∥(ξ̂(uh)P sc)

1
2Π0

p−1∇ζ1∥20,E + gsc(uh)∥∇(I − Π∇
p )ζ1∥20,E

)
.

≤ 2

3
Υ2

∑
E∈Th

(
∥(ξ̂(uh)P sc)

1
2Π0

p−1∇uI∥20,E +
1

α∗
gsc(uh)S

E
1 ((I − Π∇

p )uI , (I − Π∇
p )uI)

)
+
3

8
Υ−1

2

∑
E∈Th

(
∥(ξ̂(uh)P sc)

1
2Π0

p−1∇ζ1∥20,E +
1

α∗
gsc(uh)S

E
1 ((I − Π∇

p )ζ1, (I − Π∇
p )ζ1)

)
≤ 2

3
γ∗Asc(uh;uI , uI) +

3

8
Avsc(uh; ζ1, ζ1). ( as Υ2 ≤ 1 ) (3.9.16)

where Υ1 :=
4

3
Υ2 and Υ2 := max{1, 1

α∗
} = min{1, α∗} ≤ 1.

Next we evaluate the term Asc(uh;uI , uI). Using the definition of Avsc in (3.7.1) along
with (3.7.2) and (3.9.4), we get

Asc(uh;uI , uI) ≤
∑

E∈Th
|ξ(uh)∥∇uI∥20,E ≤

∑
E∈Th

ρE(uh) |R∗
E(uh)|2 |uI |21,E

≤ κ
∑

E∈Th
τE ∥ − ∇ ·Π0

p−1D∇uh +
−→
β · ∇uh +Ψ(uh)− f∥20,E

|uI |21,E
||uh|1,E + σE|2

≤ κ
(
max
E∈Th

NE

)2 ∑
E∈Th

τE ∥ − ∇ ·Π0
p−1D∇uh +

−→
β · ∇uh +Ψ(uh)− f∥20,E

≤ κ
(
max
E∈Th

NE

)2 ∑
E∈Th

4 τE

{
∥ − ∇ ·Π0

p−1D∇(uh − uI) +
−→
β · ∇(uh − uI)∥20,E

+∥ − ∇ ·Π0
p−1D∇(uI − u) +

−→
β · ∇(uI − u)∥20,E

+∥ − ∇ · (Π0
p−1D∇u−D∇u)∥20,E + ∥Ψ(uh)−Ψ(u)∥20,E

}
. (3.9.17)
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Using triangle inequality and (3.8.4), we get,

4
∑

E∈Th
4τE ∥ − ∇ ·Π0

p−1D∇(uh − uI) +
−→
β ·Π0

p−1∇(uh − uI)∥20,E

≤ 8
∑

E∈Th
τE
{
∥ − ∇ ·Π0

p−1D∇ζ1∥20,E + ∥
−→
β · ∇ζ1∥20,E

}
≤ 8

∑
E∈Th

{
∥D∇ζ1∥20,E + τE ∥

−→
β · ∇ζ1∥20,E

}
≤ 8 ∥|ζ1∥|2. (3.9.18)

Similarly, using (3.8.4) and the definition of ζ2, we get,

4
∑

E∈Th
τE ∥ − ∇ ·Π0

p−1D∇(uI − u) +
−→
β · ∇(uI − u)∥20,E ≤ 8 ∥|ζ2∥|2. (3.9.19)

Using (3.8.4) and (3.9.3), we obtain,

4
∑

E∈Th
τE ∥ − ∇ · (Π0

p−1D∇u−∇u)∥20,E ≤
∑

E∈Th
4DE∥(Π0

p−1∇u−∇u)∥20,E

≤
∑

E∈Th
4DE∥∇(Π∇

p − I)u∥20,E

≤ C
∑

E∈Th
DE

(hE
p

)2ℓ ∥u∥2ℓ+1,E. (3.9.20)

Using Lipschitz continuity of Ψ, noting 0 ≤ τE ≤ θ

64

Ψ0

L2
Ψ

and θ < 1, we have,

4
∑

E∈Th
τE ∥Ψ(uh)−Ψ(u)∥20,E ≤ θ

16
∥|u− uh∥|2 ≤ ∥|u− uh∥|2. (3.9.21)

The Lemma 3.6 implies for sufficiently small κ > 0, we have

κ
(
max
E∈Th

NE

)2
≤ θ

64
. (3.9.22)

Substituting (3.9.18)-(3.9.22) into (3.9.16), we obtain

II ≤ θ

12
γ∗∥|ζ1∥|2 +

θ

12
γ∗∥|ζ2∥|2 + C

∑
E∈Th

DE

(hE
p

)2ℓ ∥u∥2ℓ+1,E

+
θ

96
γ∗∥|u− uh∥|2 +

3

8
Avsc(uh; ζ1, ζ1). (3.9.23)

Substituting the estimates (3.9.12), (3.9.13), (3.9.14), (3.9.15) and (3.9.23), into (3.9.11),
we obtain
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θ ∥|ζ1∥|2 + Avsc(uh; ζ1, ζ1) ≤ 5θ

16
|||ζ1|||2 + 2

LΨ + µ∗

Ψ0

∥|ζ1∥|2 +
θ

12
γ∗∥|ζ1∥|2

+
16

θ
C(Θ(ζ2))

2 +
θ

12
γ∗∥|ζ2∥|2 +

( LΨ + µ∗

Ψ0

+
θ

16
+

θ

96
γ∗
)
∥|u− uh∥|2

+C
∑

E∈Th

[
τE β

2
E +DE

] (hE
p

)2ℓ ∥u∥2ℓ+1,E +
3

8
Avsc(uh; ζ1, ζ1).

Noting that θ < 1 and simplifying, we obtain

∥|ζ1∥|2 + Avsc(uh; ζ1, ζ1) ≤ J1

{ 16

θ
C(Θ(ζ2))

2 +
1

12
γ∗∥|ζ2∥|2 + J2 ∥|u− uh∥|2

+C
∑

E∈Th

[
τE β

2
E +DE

] (hE
p

)2ℓ ∥u∥2ℓ+1,E

}
, (3.9.24)

where, J1 :=
24Ψ0

(15θ − 2γ∗)Ψ0 − 48(LΨ + µ∗)
> 0, and J2 :=

96(LΨ + µ∗) + 6θΨ0 + γ∗Ψ0

96Ψ0

.

Let us estimate Avsc(uh; ζ2, ζ2). Using (3.7.11) and (3.8.30), we have

Avsc(uh; ζ2, ζ2) ≤ γ∗Asc(uh; ζ2, ζ2) ≤
∑

E∈Th
|ξ(uh)|ζ2|21,E

≤
∑

E∈Th
ρE(uh) |R∗

E(uh)|2 |u− uI |21,E

Using (3.7.2) and (3.9.4), we get

Avsc(uh; ζ2, ζ2) ≤ κ
∑

E∈Th
τE ∥ − ∇ ·Π0

p−1D∇uh +
−→
β · ∇uh +Ψ(uh)− f∥20,E

|u|21,E
||uh|1,E + σE|2

≤ κ Cu
∑

E∈Th
τE ∥ − ∇ ·Π0

p−1D∇uh +
−→
β · ∇uh +Ψ(uh)− f∥20,E,

where, Cu :=
[
max
E∈Th

{
|u|1,E/||uh|1,E + σE|

} ]2
. Estimating similar to (3.9.17), noting that

θ < 1 and for sufficiently small κ > 0, having κ Cu ≤ θ

64
, we obtain,

Avsc(uh; ζ2, ζ2) ≤
γ∗

8

(
∥|ζ1∥|2 + ∥|ζ2∥|2

)
+ C

∑
E∈Th

DE

(hE
p

)2ℓ ∥u∥2ℓ+1,E +
γ∗

64
∥|u− uh∥|2. (3.9.25)

Note that, ∥|u−uh∥|2 ≤ 2∥|ζ1∥|2+2∥|ζ2∥|2 andAvsc(uh;u−uh, u−uh) ≤ 2Avsc(uh; ζ1, ζ1)+

2Avsc(uh; ζ2, ζ2). Thus,

76



∥|u− uh∥|2 + Avsc(uh;u− uh, u− uh) ≤ 2∥|ζ1∥|2 + 2Avsc(uh; ζ1, ζ1) + 2∥|ζ2∥|2 + 2Avsc(uh; ζ2, ζ2).

Therefore using (3.9.24), (3.9.25) and substituting (3.9.24) as a bound for ∥|ζ1∥|2, we get,

∥|u− uh∥|2 + Avsc(uh;u− uh, u− uh)

≤
(
2 +

γ∗

4

)
J1

{ 16

θ
C(Θ(ζ2))

2 +
γ∗

12
∥|ζ2∥|2 + J2 ∥|u− uh∥|2

}
+C

∑
E∈Th

[
τE β

2
E +DE

] (hE
p

)2ℓ ∥u∥2ℓ+1,E + 2 ∥|ζ2∥|2 +
γ∗

4
∥|ζ2∥|2 +

γ∗

32
∥|u− uh∥|2.

Using θ < 1, collecting the coefficients of ∥|u− uh∥|2 and simplifying, we get

J3 ∥|u− uh∥|2 + Avsc(uh;u− uh, u− uh)

≤
(
2 +

γ∗

4

)
J1

16

θ
C(Θ(ζ2))

2 +
(
2 +

γ∗

4

)( γ∗
12

J1 + 1
)
∥|ζ2∥|2

+C
∑

E∈Th

[
τE β

2
E +DE

] (hE
p

)2ℓ ∥u∥2ℓ+1,E, (3.9.26)

where, J3 :=
3[ (8θ − γ∗)Ψ0 − (64 + 3γ∗)(LΨ + µ∗) ]

2[ (15θ − 2γ∗)Ψ0 − 48(LΨ + µ∗) ]
> 0.

Using (3.7.11) on Avsc(uh;u − uh, u − uh) and absorbing the coefficients of ∥|ζ2∥|2 into
the coefficient of Θ(ζ2) in (3.9.26), we obtain the desired estimate (3.9.10).

3.9.2 Adding crosswind-direction diffusion.

Whenever
−→
β ̸= 0, the term Avsc(·; ·, ·) adds artificial diffusion in a crosswind direction

with the parameters P sc and ξ̂(·) in (3.7.8) set as follows :

P sc := I−
−→
β ⊗

−→
β

|
−→
β |2

and ξ̂E(z) := ϱE(z)R
∗
E(z), (3.9.27)

where R∗
E(z) is as defined in (3.7.9).

Theorem 3.5. Let u ∈ H1
0 (Ω) ∩ Hℓ+1(E), ℓ ∈ N be the exact solution of (3.6.1) with

(∇ · D∇u)|E ∈ L2(E) for all E ∈ Th. Let the stabilization parameter τE be as in (3.9.9)
and Ψ0 (15θ − 2γ∗) > 2(64 + 3γ∗)(LΨ + µ∗) be satisfied. For a sufficiently small κ > 0,

we suppose that 0 ≤ ϱE(vh) ≤ κ τE R
∗
E(vh) ∀ vh ∈ V p

h . Then the solution uh ∈ V p
h of
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(3.7.13) with (3.9.27) satisfies,

∥|u− uh∥|2 + γ∗
∑

E∈Th
ξ̂E(uh) ∥(P sc)1/2∇(u− uh)∥20,E

≤ C
{
[Θ(u− uI)]

2 +
∑

E∈Th

[
τE β

2
E +DE

] (hE
p

)2ℓ ∥u∥2ℓ+1,E

}
, (3.9.28)

where uI ∈ V p
h is the virtual interpolant of u as in (3.8.30) and constantC > 0 is dependent

on LΦ, Ψ0, θ, γ
∗, but independent of D, hE .

Proof. The proof is similar to Theorem 3.4.

Now we prove a convergence result with respect to the ∥| · ∥| for the discrete scheme
(3.7.13) with either (3.9.4) or (3.9.27), using suitable choice for τE .

Theorem 3.6. Let u ∈ H1
0 (Ω) be the solution of (3.6.1) with u ∈ Hℓ+1(E), p ≥ ℓ > 1.

Let uh ∈ V p
h satisfy problem (3.7.13) with one of the two variants, (3.9.4) or (3.9.27).

Consider the assumptions on Ψ0, γ
∗ and ξ̂E(·) given in either Theorem 3.4 or Theorem

3.5, depending on the SC variants (3.9.4) or (3.9.27), respectively. Additionally we assume
1

τE
≤ β2

E

D∨
E

and the choice for τE as,

τE ∼ min
{ hE
pβE

;
h2E

p4 c2invDE

;
Ψ0

L2
Ψ

}
. (3.9.29)

Let us denote Peclet number PeE :=
hE βE
pDE

. Then for sufficiently small h, we have

∥|u− uh∥|2 ≤ C
∑

E∈Th

(hE
p

)2ℓ
DE

(
1 + PeE + Z(t)

E +min
{
XE ;

DE

D∨
E

Pe2E
})

∥u∥2ℓ+1,E, (3.9.30)

where, XE := max
{
PeE; p

2c2inv;Z
(r)
E

}
, Z(t)

E :=
Ψ0

DE

(
hE
p

)2

, Z(r)
E :=

L2
Ψ

Ψ0DE

(
hE
p

)2

.

Proof. Using (3.9.10) or (3.9.28) and (3.8.22), we have,

∥|u− uh∥|2 ≤ C [Θ(u− uI)]
2 + C

∑
E∈Th

(
τE β

2
E +DE

) (hE
p

)2ℓ
∥u∥2ℓ+1,E

≤ C
[
∥|u− uI∥|+

( ∑
E∈Th

min
{ 1

τE
;
β2
E

D∨
E

}
∥u− uI∥20,E

) 1
2
]2

+C
∑

E∈Th

(
τE β

2
E +DE

) (hE
p

)2ℓ
∥u∥2ℓ+1,E
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Applying (m+ n)2 ≤ 2(m2 + n2), the definition of ∥| · ∥| and (3.8.30), we get

∥|u− uh∥|2 ≤ C
[ ∑
E∈Th

(
DE|u− uI |21,E +Ψ0 ∥u− uI∥20,E + τE β

2
E|u− uI |21,E

)
+
∑

E∈Th
min

{ 1

τE
;
β2
E

D∨
E

}
∥u− uI∥20,E +

∑
E∈Th

(
τE β

2
E +DE

) (hE
p

)2ℓ
∥u∥2ℓ+1,E

]
≤ C

∑
E∈Th

(
2[DE + τE β

2
E] +

h2E
p2

Ψ0 +
h2E
p2

min
{ 1

τE
;
β2
E

D∨
E

})(hE
p

)2ℓ
∥u∥2ℓ+1,E.

Note that, from (3.9.29), the definitions of PeE, Z(r)
E , we have

1

τE
= XE and using τE ≤

hE
pβE

we obtain the desired estimate (3.9.30).

Let us now examine the optimality of (3.9.30) in the cases of convection dominated
or reaction dominated phenomenon. For simplicity we assume D(x) ≡ D. Under the
convection dominated case, ie. Pe ≥ max{Z(r)

E ,Z(t)
E } ≥ p2 c2inv, or the reaction dominated

case, ie. min{Z(r)
E ,Z(t)

E } ≥ Pe ≥ p2 c2inv, from (3.9.30) we get,

∥|u− uh∥|2 ≤ C
∑
E∈Th

(hE
p

)2s+1

∥u∥2ℓ+1,E. (3.9.31)

Thus (3.9.31) implies optimal order of convergence in the |||·|||.

3.10 Numerical Experiments

In this section we discuss two benchmark problems highlighting that shock capturing
VEM reduces the oscillations along the layers more efficiently than VEM-SUPG method.
In our simulations we have considered VEM of orders p = 1, 2 and 3. For computational

purpose, we choose the stabilization parameter τE := min
{ hE

2 ∥
−→
β ∥R2

,
h2E
|D|

}
and for ϱE(·)

in (3.9.27), we consider (see [69]) :

ϱE(z) := q0 hE max
{
0, δ − 2 |D|

hE R∗
E(z)

}
, (3.10.1)

with q0 ∈ [0.1, 1], δ = 0.7 and σ = 10−4 in (3.7.9).

For both the examples, we consider Ω = (0, 1)2. The discretized nonlinear system of
equations were solved using Newton’s method with zero initial guess. The stopping criteria
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for the iteration is fixed as 10−7. The error with respect to the energy norm ∥| · ∥| is denoted
by eh and defined as,

e2h =
∑

E∈Th

(
∥
√
D∇(u− Π∇

p uh)∥20,E +Ψ0 ∥u− Π0
puh∥20,E + τE ∥

−→
β · ∇(u− Π∇

p uh)∥20,E
)
.

3.10.1 Example 1

We consider D = 10−7,
−→
β = (

1√
5
,

2√
5
)T and Ψ(u) = u + u3 in (3.6.1). The source

function f is defined by choosing the exact solution as u(x, y) :=
1

2

(
1−tanh

2x1 − x2 − 0.25√
5D

)
.

We use Dirichlet boundary conditions prescribed by u. Note that the solution is dependent
on the diffusion coefficient D and is characterised by an interior layer of O(

√
D|lnD|)

around the line 2x1 − x2 − 0.25.
We consider regular Voronoi mesh (Fig. 3.8) whose important parameters are presented

in Table 3.2. We compute the numerical solution of this problem using the discrete scheme
(3.7.13) with artificial crosswind-direction diffusion terms given in (3.9.27). Let us take
q0 = 0.1 in (3.10.1).

Figure 3.8: Sample of regular Voronoi mesh with h=1/5.

h NE dof p=1 dof p=2 dof p=3
1/5 80 162 483 884

1/10 300 601 1801 3301
1/20 1300 2599 7797 14295
1/40 5000 9998 29995 54992
1/80 24000 47959 143917 263875

Table 3.2: Regular Voronoi mesh parameters with mesh diameter (h), number of elements
(NE) and degrees of freedom (dof) for VEM orders p=1,2 and 3.

The errors eh obtained for the regular Voronoi mesh for VEM orders p = 1, 2 and 3,
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along with the rate of convergence is given in Table 3.3. Since the solution u is dependent
on D, the optimal order of convergence will be obtained only for very small h.

p=1 p=2 p=3
h eh roc eh roc eh roc

1/5 7.36e−2 ∗ 9.24e−2 ∗ 7.38e−2 ∗
1/10 6.31e−2 0.22 8.26e−2 0.16 4.95e−2 0.57
1/20 4.47e−2 0.49 6.19e−2 0.41 3.35e−2 0.56
1/40 3.68e−2 0.28 4.35e−2 0.51 2.91e−2 0.21
1/80 2.53e−2 0.54 2.66e−2 0.71 1.57e−2 0.89

Table 3.3: Error eh wrt ∥| · ∥| and the rate of convergence (roc).

In order to show the effect of adding shock capturing stabilization term in the formula-
tion, we compare the cross-sectional graph of the SUPG stabilized VEM method with and
without shock capturing term. In Figure 3.9-3.10, we consider the cross-section along the
line x1 + 2x2 = 1.
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Figure 3.9: Cross-section graph : VEM-SUPG (top) and VEM-SUPG+SC (bottom) for
regular Voronoi mesh with h=1/20.
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Figure 3.10: Cross-section graph : VEM-SUPG+SC for regular Voronoi mesh with
h=1/80.

From Figure 3.9 we infer that the oscillations are effectively damped effectively by the
Shock capturing VEM of order greater than one. We can also observe that the quality of
the numerical solution increase with increase in VEM order p. In Figure 3.10 we see that
for h = 1/80, the oscillations are completely removed for VEM orders p = 2 and 3.

3.10.2 Example 2

We consider D = 10−6,
−→
β (x, y) = (−y, x)T , Ψ(u) = u4 and f = 0. The discontinu-

ous boundary data is prescribed as follows :

u(x, y) = 1 if 1/3 ≤ x ≤ 2/3, y = 0

u(x, y) = 0 if x ∈ [0, 1/3) ∩ (2/3, 1], y = 0

u(x, y) = 0 if x = 1, y ∈ [0, 1]

u(x, y) = 0 if x ∈ [0, 1], y = 1

∂u(x, y)

∂n
= 0 if x = 0, y ∈ [0, 1],

(3.10.2)

where n is the unit outward normal. We use the discrete scheme (3.7.13) with artificial
crosswind-direction diffusion terms given in (3.9.27) and q0 = 0.2 in (3.10.1) to compute
the numerical solution. The solution u possess two interior characteristic layers beginning
from the line joining the points (1/3,0) and (2/3,0).

We consider three different meshes namely, distorted squares, hexagons and non-convex
polygons. A representative of each mesh is shown in Figure 3.11. In Table 3.4 we present
details of some useful mesh parameters.
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(a) Distorted squares. (b) Hexagons. (c) Non-convex polygons.

Figure 3.11: Samples of meshes with diameter h = 1/5.

Mesh h NE dof p=1 dof p=2 dof p=3
Distorted
squares

1/16 784 841 3249 6441
1/32 3136 3249 12769 25425

Hexagons
1/16 1681 3364 10089 18495
1/32 6561 13124 39369 72175

Non-convex
polygons

1/16 1600 4801 12801 22401
1/32 6400 19201 51201 89601

Table 3.4: Mesh parameters with degrees of freedom (dof) and number of elements (NE).

We study the performance of our shock capturing VEM method by comparing with
SUPG stablised VEM on the cross-section of the outflow boundary line x = 0. In Figure
3.12-3.13 presents the outflow boundary cross-section of the numerical solution for dis-
torted square mesh with h = 1/16 and h = 1/32, respectively, for VEM order p = 1, 2, 3.
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Figure 3.12: Cross-section graph : VEM-SUPG (red broken line) VEM-SUPG+SC (blue
line) for distorted square mesh with h=1/16.
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Figure 3.13: Cross-section graph : VEM-SUPG (red broken line) VEM-SUPG+SC (blue
line) for distorted square mesh with h=1/32.

(a) p = 3 (b) p = 3

Figure 3.14: A comparison of surface plot of numerical solution obtained without- and
with- shock cpaturing for distoted square mesh with h = 1/32 and VEM order p=3.

Similarly, Figure 3.15-3.16 represents the outflow boundary cross-section of the numer-
ical solution for hexagonal mesh with h = 1/16 and h = 1/32, respectively, for VEM order
p = 1, 2 and 3. Again, Figure 3.17-3.18 represents the outflow boundary cross-section of
the numerical solution for non-convex mesh with h = 1/16 and h = 1/32, respectively, for
VEM order p = 1, 2 and 3.
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Figure 3.15: Cross-section graph : VEM-SUPG (red broken line) VEM-SUPG+SC (blue
line) for hexagonal mesh with h=1/16.
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Figure 3.16: Cross-section graph : VEM-SUPG (red broken line) VEM-SUPG+SC (blue
line) for hexagonal mesh with h=1/32.
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Figure 3.17: Cross-section graph : VEM-SUPG (red broken line) VEM-SUPG+SC (blue
line) for non-convex mesh with h=1/16.
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Figure 3.18: Cross-section graph : VEM-SUPG (red broken line) VEM-SUPG+SC (blue
line) for non-convex mesh with h=1/32.

(a) p = 3 (b) p = 3

Figure 3.19: A comparison of surface plot of numerical solution obtained without- and
with- shock cpaturing for hexagonl mesh with h = 1/32 and VEM order p=3.

In Figures 3.14, 3.19 and 3.20, we present the surface plot of the numerical solution
obtained from SUPG stabilized VEM, and shock capturing VEM of order p = 3 for dif-
ferent meshes such as distorted squares, hexagons and non-convex polygons, respectively,
for h = 1/32. Clearly, we see the efficiency of the shock-capturing term in reducing the
nonphysical oscillations in the numerical solution on the three meshes considered.

Across all meshes taken into consideration, from Figures 3.12-3.13, 3.15-3.16, and
3.17-3.18, we infer the following about the effectiveness of shock-capturing stabilization
term in (3.7.13). In the case of linear VEM, there is negligible reduction of spurious os-
cillations in the numerical solution. But in higher order VEM, the shock-capturing term
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effectively diminishes the nonphysical oscillation of the numerical solution in the layer re-
gions. Also, in a particular higher order VEM, reducing the diameter h produces highly
qualitative numerical solution.

(a) p = 3 (b) p = 3

Figure 3.20: A comparison of surface plot of numerical solution obtained without- and
with- shock capturing for non-convex mesh with h = 1/32 and VEM order p=3.

3.11 Summary

This chapter has studied the shock-capturing stabilized VEM for the convection-diffusion-
reaction equation. As a motivation, we formulated a well-posed shock capturing stabi-
lized discrete scheme approximating the linear convection-diffusion-reaction equation in
the VEM context. Numerical experiments conducted on linear problems with unknown so-
lutions having discontinuous boundary data revealed the efficiency of shock-capturing tech-
nique over the SUPG method on second-order VEM for different types of meshes. Since
the exact solution was not known, a comparison of the cross-section of the corresponding
first-order FEM and VEM solution on triangular mesh exhibit similar structures. We have
devised a shock-capturing stabilization of the VEM for a semilinear convection-diffusion-
reaction equation with this boosting. An extensive theoretical analysis of the approximate
scheme was conducted. We have shown the well-posedness of the formulation and its error
estimates with the convergence rate. We laid the conditions for choosing optimal SUPG
parameters. In the end, we performed two numerical experiments to validate the theoret-
ical findings. Both the experiments show the effectiveness of the shock-capturing VEM
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compared with the VEM-SUPG method.
For first-order VEM, the shock-capturing method was ineffective for the linear and non-

linear problems. We highlight that the shock-capturing technique combined with higher-
order VEM efficiently damps the spurious oscillations in the numerical solution.
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Chapter 4

Virtual element method for the quasilin-
ear convection-diffusion-reaction equation
on polygonal meshes

The quasilinear convection-diffusion equation arises in diverse areas such as in plasma
physics describing movement of ions [71], the Burgers equation related to turbulence the-
ory [72], gas and oil extractions, fibre optics and aerodynamic theory [73]. In order to re-
duce the spurious oscillations appearing in the numerical solution of convection dominated
problem, we use the streamline upwind Petrov-Galerkin method for stabilizing the virtual
element method. We know that quasilinear convection-diffusion equations are closely re-
lated to the Navier-Strokes equation. In many practical applications, the solution of these
equations are isolated, that is, the solution is unique upto a neighbourhood. We call this
collection of solutions in a neighbourhood as a branch of solutions. This chapter studies the
VEM approximation of branch of nonsingular solution of quasilinear convection-diffusion-
reaction equation. The analysis is based on a variant of broader theory developed for a class
of nonlinear problems by Brezzi et. al. [74].

The main feature of virtual element space is that the associated local degrees of free-
dom uniquely determines the functions in the interior and on the boundary of each element.
Since the non-polynomial component of the functions are not known explicitly, neither we
have an approximate expression for the basis function nor we can use quadrature formula to
compute the discrete scheme. Thus, we must take special care in devising the discrete oper-
ators in the VEM scheme. In the VEM context, we use polynomial projection operators on
the functions to split it into its polynomial and non-polynomial constituents, and the opera-
tor terms are evaluated using only the degrees of freedom such that we obtain exact results
when one of the two entries is a polynomial, and for other occurrences we produce values of
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only right order of magnitude and stability property. Hence to ensure computablity, we use
projection operators appropriately in the discrete formulation. Moreover, to approximate
the nonlinear convective coefficient and reaction function, we incorporate the projection
operators and add the necessary VEM stabilizers. From the analysis, we note that for the
VEM stabilizers supporting the nonlinear reaction function, it is sufficient to provide a
linear coefficient, whereas in the approximation involving nonlinear convective function,
the coefficient of the VEM stabilizer remained nonlinear. In the error analysis section, we
show that the use of polynomial projection operators and the added VEM stabilizers do not
affect the rate of convergence.

A challenge in numerical simulation of quasilinear problem is the execution of New-
ton’s iterative method which becomes computationally expensive on very fine mesh. In
two-grid method, we solve the system with two meshes of different mesh diameters. The
nonlinear system is solved on a much coarser grid. Then, in the fine grid, only a few
number (say, one or two) of nonlinear iterations are performed with the coarse grid solu-
tion as the initial guess. Various adaptations of two-grid methods have been successfully
applied to many problems such as quasilinear elliptic equation [75], nonlinear hyperbolic
equation [76], nonlinear parabolic integro-differential equations [77] and mixed FEM for
Darcy-Forchheimer model [78]. Hence in the numerical simulations, we consider using the
two-grid method proposed in [79] for solving the discrete formulation.

4.1 The continuous problem

Consider the model problem,

L(u) := −∇ · (ϵ∇u) + β(u) · ∇u+ r(u) = 0 in Ω, (4.1.1)

u = 0 on Γ,

where Ω is a bounded domain in R2 with Lipschitz continuous boundary Γ. We assume the
parameter ϵ ∈ R+ where 0 < ϵ0 ≤ ϵ ≤ ϵ1,, the nonlinear coefficients β(·) = (β1(·), β2(·))
with βj : R → R, j = 1, 2 and r : R → R are twice differentiable functions. Let ∂u(·) and
∂uu(·) denote the first and second order derivatives with respect to u, respectively.

Assumption 4.1. Furthermore, we assume, the nonlinear function r such that r(0) = 0,
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and there exists a monotonically increasing function Q : R+ → R+ satisfying

∑
j=1,2

[
|βj(s)|+ |∂u βj(s)|+ |∂uu βj(s)|

]
+ |divβ(s)|

+|r(s)|+ |∂u r(s)|+ |∂uu r(s)| ≤ Q(|s|) ∀s ∈ R. (4.1.2)

4.1.1 Notation

Let ω ⊂ R2 be a measurable set. The usual Lebesgue space L2(ω) is endowed with
L2 inner product denoted by (·, ·)ω and norm by ∥ · ∥0,ω, respectively. L∞ norm denoted
by ∥ · ∥∞,ω. For the Sobolev space, Hs(ω), s ∈ N, we denote the seminorm by | · |s,ω
and norm by ∥ · ∥s,ω. ⟨·, ·⟩ denotes the duality pairing between a Banach space X1 and its
corresponding dual space X2. Let L(X2, X1) be the space of bounded linear operator from
X2 into X1, with standard operator norm ∥ · ∥L(X2,X1). We omit the index ω whenever the
domain is evident.

4.1.2 The variational formulation of (4.1.1)

Findu ∈ H1
0 (Ω) ∩ L∞(Ω) such that

⟨L(u), v⟩ := ϵ(∇u,∇v)Ω + (β(u) · ∇u, v)Ω + (r(u), v)Ω = 0 ∀v ∈ H1
0 (Ω). (4.1.3)

We reformulate (4.1.3) to align with the abstract framework of Brezzi et.al [74, 80].
Let us denote µ1 = ϵ−1

1 , µ2 = ϵ−1
0 and consider the compact interval I = [µ1, µ2] ⊂ R.

Then, for any ϵ ∈ [ϵ0, ϵ1], we have ϵ−1 ∈ I . We know that [81], there exists an operator
M0 : I ×H1

0 (Ω) → H−1(Ω) such that [81]:

⟨M0(µ,w), v⟩ := µ
[
(β(w) · ∇w, v)Ω + (r(w), v)Ω

]
∀v ∈ H1

0 (Ω), (4.1.4)

and a bounded linear inverse Laplace operator T : H−1(Ω) → H1
0 (Ω) solving

(∇(T(g)),∇v)Ω = ⟨g, v⟩ ∀v ∈ H1
0 (Ω). (4.1.5)

Let µ = ϵ−1. Using the operators in (4.1.4) and (4.1.5), the variational form (4.1.3) is
rewritten as findu ∈ H1

0 (Ω) ∩ L∞(Ω), such that

F (µ, u) := u+ TM0(µ, u) = 0.
(4.1.6)
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In addition to the supposition (4.1.2), we assume the following (see [81]).

Assumption 4.2. There exists a branch B :=
{
(µ, uµ) : µ ∈ I, uµ ∈ H1

0 (Ω)∩L∞(Ω)
}

of
nonsingular solutions of (4.1.6), in the sense that :

for all µ ∈ I , F (µ, uµ) = 0,

the function U : I → H1
0 (Ω) s.t. U(µ) = uµ is continuous , and

for all µ ∈ I , DF (µ, uµ) is an isomorphism on H1
0 (Ω) ∩ L∞(Ω),

where DF (·, z) is the Fréchet derivative of operator F with respect to z.

Assumption 4.3. The set containing H1 and L∞ norms of solutions uµ in branch B is
uniformly bounded, i.e.,∃ λ > 0 such that max

(µ, uµ)∈B
{ ∥uµ∥1,Ω ; ∥uµ∥∞,Ω } ≤ λ.

Assumption 4.4. The map φ : W 2,p(Ω) ∩H1
0 (Ω) → Lp(Ω) defined by φ(w) = ∆w is an

isomorphism for all p ∈ [1, 2].

Then (4.1.2), assumptions 4.2 and 4.4 implies any solution u satisfying the problem
(4.1.6) belongs to H2(Ω) ∩H1

0 (Ω) ∩ L∞(Ω) (see Lemma 2.1 in [81]).

Remark 4.1. Let X̄ = H1
0 (Ω) ∩ H2(Ω) and Y = L2(Ω). Using assumption 4.4, we also

note T ∈ L(Y, X̄).

4.1.3 VEM Spaces

Consider {Th}h>0 to be a family of polygonal partitioning of Ω satisfying the assump-
tion 1.1 stated in Chapter 1. In our analysis, we use the polynomial projection operators
Π∇

p , Π0
p and Π0

p defined in (1.3.1), (1.3.2) and (1.3.3), respectively. For approximation we
consider the global virtual element space V p

h given in (1.3.5).

4.2 VEM formulation

It is a well known fact that the problem (4.1.1) is singularly perturbed, and the dis-
cretisation of (4.1.3) yields numerical solutions with non-physical oscillations. To alleviate
this, we add the streamline-upwind Petrov-Galerkin (SUPG) stabilization in the discrete
formulation. The SUPG stabilized discrete formulation isfinduh ∈ V p

h such that

a(uh, vh) + b({uh, uh };uh, vh) + c(uh;uh, vh) + d(uh;uh, vh) = 0 ∀v ∈ V p
h (Ω)
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where,

a(uh, vh) :=
∑

E∈Th
ϵ (∇uh, ∇vh )E , (4.2.1)

b({wh, zh };uh, vh) :=
∑

E∈Th
(β(wh) · ∇uh, δE β(zh) · ∇vh )E , (4.2.2)

c(wh;uh, vh) :=
∑

E∈Th
( r(uh) + β(wh) · ∇uh, vh )E , and (4.2.3)

d(zh;uh, vh) :=
∑

E∈Th

(
−∇ · ϵΠ0

p−1∇uh + r(uh), δE β(zh) · ∇vh
)
E
. (4.2.4)

The variable δE is the local stabilization parameter usually dependent on hE . The functions
in the VEM space V p

h are only implicitly known through their degrees of freedom. Hence
we need to suitably modify the terms in (4.2.1)-(4.2.4) so that they are computable using
only the degrees of freedom.

To this end, we consider a symmetric bilinear form SE : V E
h × V E

h → R such that, ∃
constants α∗, α

∗ > 0 independent of h and E satisfying

α∗ (∇vh,∇vh)E ≤ SE(vh, vh) ≤ α∗ (∇vh,∇vh)E ∀vh ∈ kerΠ∇
p . (4.2.5)

Using the polynomial projection operators Π∇
k , Π0

p, Π0
p−1, and SE , we define the VEM

computable terms as follows :

ah(uh, vh) :=
∑

E∈Th
(ϵΠ0

p−1∇uh, Π0
p−1∇vh)E + ϵ SE((I − Π∇

k )uh, (I − Π∇
k )vh),(4.2.6)

bh({wh, zh} ;uh, vh) :=
∑

E∈Th

[ (
β(Π0

pwh) ·Π0
p−1∇uh, δE β(Π0

pzh) ·Π0
p−1∇vh

)
E

+δE S̃2 SE((I − Π∇
k )uh, (I − Π∇

k )vh)
]
, (4.2.7)

ch(wh;uh, vh) :=
∑

E∈Th

(
r(Π0

puh) + β(Π0
pwh) ·Π0

p−1∇uh, Π0
pvh
)
E
, (4.2.8)

dh(zh;uh, vh) :=
∑

E∈Th

(
−∇ · ϵΠ0

p−1∇uh + r(Π0
puh), δE β(Π0

pzh) ·Π0
p−1∇vh

)
E
.(4.2.9)

The parameter S̃ in (4.2.7) is chosen guaranteeing two positive constants ℘∗, ℘
∗ indepen-

dent of h and E such that for all wh, zh, vh ∈ V p
h ,

℘∗ b({wh, zh} ; vh, vh) ≤ bh({wh, zh} ; vh, vh) ≤ ℘∗ b({wh, zh} ; vh, vh), (4.2.10)

and S̃ ≤ Q(λ). (4.2.11)

Similarly, for sufficiently small constants C1, C2 ( independent of ϵ, h) and for each E ∈
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Th, the choice for δE satisfies,

(i) 0 ≤ ϵ δE ≤ C1 h
2
E, (ii) δE ≤ C2 hE. (4.2.12)

Let us denote,

A({wh, zh} ;uh, vh) := ah(uh, vh) + bh({wh, zh} ;uh, vh) + ch(wh;uh, vh) + dh(zh;uh, vh).

A computable SUPG stabilized virtual element discretisation (VEM-SUPG) of (4.1.1) is,finduh ∈ V p
h such that

A({uh, uh} ;uh, vh) = 0 ∀vh ∈ V p
h .

(4.2.13)

Next, we re-write (4.2.13) as a discrete approximation to (4.1.6) and validate the ex-
istence of a branch of discrete solution which approximates the branch B of non-singular
solutions given in assumption 4.2.

In the sequel, we denote by C a generic positive constant independent of hE, h, k and
µ, which takes different values at different instances.

Lemma 4.1. For ϕh, wh ∈ H1
0 (Ω) ∩ L∞(Ω) and vh ∈ V k

h , we define

σh(ϕh;wh, vh) := µ
[
bh({wh, ϕh} ;wh, vh) + ch(wh;wh, vh) + dh(ϕh;wh, vh)

]
.

Under the conditions (4.1.2), assumption 4.2 and (4.2.12), we have that σh(ϕh;wh, ·) is a

bounded linear functional on V p
h .

Proof. Given ϕh, wh ∈ L∞(Ω) implies that ∃ N > 0 such that ∥ϕh∥∞,Ω, ∥wh∥∞,Ω ≤ N .
Let K1 := | bh({wh, ϕh} ;wh, vh) |. Using the conditions stated in lemma, (4.2.11) and
Cauchy-Schwarz inequality, we have

K1 ≤ (Q(N))2
∑

E∈Th

[
δE ∥Π0

p−1∇wh∥E ∥Π0
p−1∇vh∥E

+ δE α∗ ∥(I −Π0
p−1)∇wh∥E ∥(I −Π0

p−1)∇vh∥E
]

≤ C h (1 + α∗)
∑

E∈Th
∥∇wh∥E ∥∇vh∥E (use (4.2.12))

≤ C h (1 + α∗)
( ∑

E∈Th
∥∇wh∥2E

) 1
2
( ∑

E∈Th
∥∇vh∥2E

) 1
2

(using Hölder’s inequality)

≤ C h (1 + α∗) |wh|1,Ω |vh|1,Ω. (4.2.14)
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Let K2 := | ch(wh;wh, vh) |. Similarly, we have

K2 ≤ C
∑

E∈Th
Q(N)

[
∥Π0

pvh∥E + ∥Π0
p−1∇wh∥E ∥Π0

pvh∥E
]

≤ C
(
1 + |wh|1,Ω

)
|vh|1,Ω (using Poincaré inequality). (4.2.15)

Let K3 := | dh(ϕh;wh, vh) |. Proceeding similar to the above derivation, we get,

K3 ≤
∑

E∈Th
Q(N) δE

[
∥∇ ·Π0

p−1ϵ∇wh∥E ∥Π0
p−1∇vh∥E +Q(λ)∥Π0

p−1∇vh∥E
]

≤ C
∑

E∈Th

[
h−1
E c∗inv δE ϵ ∥Π0

p−1∇wh∥E + δE

]
∥Π0

p−1∇vh∥E

≤ C
∑

E∈Th
hE
(
∥∇wh∥E + 1

)
∥∇vh∥E (using (4.2.12))

≤ C h
(
|wh|1,Ω + 1

)
|vh|1,Ω. (4.2.16)

From the estimates (4.2.14)-(4.2.16), we infer that σh(ϕh;wh, ·) is a bounded linear func-
tional on V p

h .

Using σh(·; ·, ·) in Lemma 4.1, we define a continuous operator Mh : I × (H1
0 (Ω) ∩

L∞(Ω)) → H−1(Ω) such that

⟨Mh(µ,wh), vh ⟩ := σh(wh;wh, vh) ∀vh ∈ V p
h . (4.2.17)

Next, we consider a bounded linear discrete inverse Laplace operator Th : H−1(Ω) → V p
h

solving

ah(Thg, vh) = ϵ ⟨ g, vh ⟩ ∀vh ∈ V p
h . (4.2.18)

Using the operators in (4.2.17) and (4.2.18), we reformulate (4.2.13) equivalently as,finduh ∈ V p
h such that

Fh(µ, uh) := uh + ThMh(µ, uh) = 0.
(4.2.19)

Remark 4.2. Let Yh = Y , where Y is as in remark 4.1. We know H−1(Ω) ⊂ Y . It holds
Th ∈ L(Yh, V

p
h ). Let ∥ · ∥∗ be the norm on Yh and is defined as

∥ · ∥∗ := sup
0̸=zh∈V k

h

⟨·, zh⟩
|zh|1

. (4.2.20)
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Remark 4.3. Using (4.1.2), assumptions 4.2-4.4 and (4.2.12), we prove the existence and
uniqueness of a branch of discrete solutions to (4.2.19) in a neighbourhood of B by utilizing
Theorem 3.8 (IV, sec.3.4) in [80].

4.3 A Priori estimates

In this section, we state the inverse inequality and interpolation estimates that are useful
for our estimation. Then, we prove the auxiliary results that will be used in our error anal-
ysis. Hereafter, we assume E is convex ∀E ∈ Th and ∀µ ∈ I, uµ ∈ Hs+1(Ω), s ∈ N. For
simplicity we denote bh({ϕh, ϕh} ;wh, vh) by the notation bh(ϕh;wh, vh). For convenience,
we shall denote u := uµ and uI := uI,µ.

We recall the inverse inequality in [31] i.e., For any wh ∈ V p
h and ∀E ∈ Th, ∃ a

constant cinv > 0 (independent of hE, E, wh) such that

∥∇ · ϵ∇wh∥E ≤ cinv h
−1
E ∥ϵ∇wh∥E. (4.3.1)

The following local polynomial interpolation estimates (see Lemma 5.1 in [12]) are con-
sidered i.e., for all E ∈ Th and any ψ ∈ Hs(E),

∥ψ − Π0
pψ∥m,E ≤ C hs−m

E |ψ|s,E m, s ∈ N ∪ {0}, m ≤ s ≤ k + 1. (4.3.2)

∥ψ − Π∇
p ψ∥m,E ≤ C hs−m

E |ψ|s,E m, s ∈ N, m ≤ s ≤ k + 1, s ≥ 1. (4.3.3)

The virtual interpolation estimate below is found in [13]. For 0 ≤ s ≤ k and for every
ψ ∈ H1+s(Ω), there exists ψI ∈ V p

h satisfying

∥ψ − ψI∥Ω + h |ψ − ψI |1,Ω ≤ C h1+s |ψ|1+s,Ω. (4.3.4)

The results that appear in subsequent remarks will be used throughout the analysis.

Remark 4.4. On a bounded Lipschitz domain D ∈ R2 we have the compact Sobolev em-
bedding H1(D) ↪→ Lp(D), 2 ≤ p <∞. That is, for any w ∈ H1(D) we have

∥w∥Lp(D) ≤ C ∥w∥1,D. (4.3.5)

Then for Π0
pw ∈ Pk(E) ⊂ H1(E) and using the estimates (4.3.5), ( (2.44) in [82] ) we have

∥Π0
pw∥Lp(E) ≤ C ∥Π0

pw∥1,E ≤ C ∥w∥1,E. (4.3.6)
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Remark 4.5. Let (·, u) ∈ B and uI be the virtual interpolant of u as in (4.3.4). The following
estimate holds for each E ∈ Th:

∥Π0
pu∥L∞(E) ≤ C

(
h−1
E ∥Π0

pu∥E + |Π0
pu|1,E + hE|Π0

pu|2,E
)

( use (2.8,[82]) )

≤ C
(
h−1
E ∥u∥E + |u|1,E + hE|Π0

pu|2,E
)

( use (2.44,[82]) )

≤ C
(
2 |u|1,E + cinv |u|1,E

)
( use Poincaré, (lemma 10,[49]), (2.44,[82]) )

≤ C |u|1,E ≤ C λ ( use assumption 3 ) (4.3.7)

Similarly,

∥Π0
puI∥L∞(E) ≤ C

(
h−1
E ∥Π0

puI∥E + |Π0
puI |1,E + hE|Π0

puI |2,E
)

≤ C
(
h−1
E (∥uI − u∥E + ∥u∥E) + (1 + cinv) (|uI − u|1,E + |u|1,E)

)
≤ C (3 + cinv) |u|1,E ( use Poincaré, (lemma 10,[49]), (2.44,[82]) , (4.3.4) )

≤ C |u|1,E ≤ C λ ( use assumption 3 ) (4.3.8)

Lemma 4.2. For any (·, u) ∈ B and its virtual interpolant uI ∈ V p
h , using (4.1.2), assump-

tions 4.2-4.4 and (4.2.12), we obtain,

µ bh(uI ;uI , vh)− µ b(u;u, vh) ≤ C1 h
s |vh|1,Ω ∀ vh ∈ V k

h , (4.3.9)

where C1 := µ2 [Q(Cλ) ]2C
[
|u|1,Ω + 3 δ + δ |u|2,Ω

]
|u|1+s,Ω.

Proof. Let K1 := µ bh(uI ;uI , vh)− µ b(u;u, vh). Then,

K1 = µ
∑

E∈Th

{ (
β(Π0

puI) ·Π0
p−1∇uI , δE β(Π0

puI) ·Π0
p−1∇vh

)
E

− (β(u) · ∇u, δE β(u) · ∇vh)E
}

+µ
∑

E∈Th
δE S̃2 SE((I − Π∇

k )uI , (I − Π∇
k )vh) = K11 + K12. (4.3.10)

Let us define,

K̄ = µ
∑

E∈Th

{ (
[β(Π0

pu) + β(u) ] ·Π0
p−1∇uI , δE β(Π0

puI) ·Π0
p−1∇vh

)
E

+
(
β(Π0

pu) · [Π0
p−1∇u+∇u ], δE β(Π0

puI) ·Π0
p−1∇vh

)
E

+
(
β(u) · ∇u, δE [β(Π0

pu) + β(u) ] ·Π0
p−1∇vh

)
E

}
.

Adding and subtracting K̄ to K11 in (4.3.10) we get,
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K11 := µ
∑

E∈Th

{ (
(β(Π0

puI)− β(Π0
pu) ) ·Π0

p−1∇uI , δE β(Π0
puI) ·Π0

p−1∇vh
)
E

+
(
(β(Π0

pu)− β(u) ) ·Π0
p−1∇uI , δE β(Π0

puI) ·Π0
p−1∇vh

)
E

+
(
β(Π0

pu) ·
[
Π0

p−1∇(uI − u) + (Π0
p−1∇u−∇u)

]
, δE β(Π0

puI) ·Π0
p−1∇vh

)
E

+
(
β(u) · ∇u, δE

[
(β(Π0

puI)− β(Π0
pu) ) + (β(Π0

pu)− β(u) )
]
·Π0

p−1∇vh
)
E

+
(
β(u) · ∇u, δE β(u) ·

[
Π0

p−1∇vh −∇vh
] )

E

}
= ι1 + ι2 + ι3 + ι4. (4.3.11)

Using mean value theorem (MVT), remark 4.5, (4.1.2), Cauchy-Schwarz inequality, gen-
eralised Hölder’s inequality, (4.3.6) and (4.3.5) we get

ι1 ≤ µ
∑

E∈Th
[Q(Cλ)]2 δE

[
∥Π0

p(uI − u)∥L3(E) + ∥Π0
pu− u∥L3(E)

]
|uI |1,E ∥Π0

p−1∇vh∥L6(E)

≤ µ
∑

E∈Th
[Q(Cλ)]2 δE

[
∥uI − u∥1,E + ∥Π0

pu− u∥1,E
]
|uI |1,E ∥Π0

p−1∇vh∥1,E

≤ µ
∑

E∈Th
[Q(Cλ)]2 δE

[
∥uI − u∥1,E + C hsE |u|1+s,E

]
|uI |1,E h−1

E |vh|1,E ( use (4.3.2), (2.6,[82]) )

≤ µ [Q(Cλ)]2
[
∥uI − u∥1,Ω + C hs |u|1+s,Ω

]
|uI |1,Ω |vh|1,Ω ( use (4.2.12) & Hölder’s ineq. )

≤ µC [Q(Cλ)]2 hs |u|1+s,Ω |u|1,Ω |vh|1,Ω. ( use (4.3.4) ) (4.3.12)

Using remark 4.5, (4.1.2), (4.3.2), Hölder’s inequality and (4.3.4), we get,

ι2 ≤ µ
∑

E∈Th
[Q(Cλ)]2 δE

[
|uI − u|1,E + ∥Π0

p−1∇u−∇u∥E
]
|vh|1,E

≤ µ
∑

E∈Th
[Q(Cλ)]2 δE

[
|uI − u|1,E + |Π∇

p u− u|1,E
]
|vh|1,E ( use ( 5.22,[12] ) )

≤ µ
∑

E∈Th
[Q(Cλ)]2 δE

[
|uI − u|1,E + C hsE|u|1+s,E

]
|vh|1,E

≤ µC [Q(Cλ)]2 δ hs |u|1+s,Ω |vh|1,Ω. (4.3.13)

Using MVT, remark 4.5, (4.1.2), Cauchy-Schwarz inequality, generalised Hölder’s inequal-
ity and (4.3.6), we get,

ι3 ≤ µ
∑

E∈Th
[Q(Cλ)]2 δE ∥∇u∥L6(E)

[
∥Π0

p(uI − u)∥L3(E) + ∥Π0
pu− u∥L3(E)

]
∥Π0

p−1∇vh∥E

≤ µ
∑

E∈Th
[Q(Cλ)]2 δE ∥∇u∥1,E

[
∥uI − u∥1,E + ∥Π0

pu− u∥1,E
]
|vh|1,E

≤ µ
∑

E∈Th
[Q(Cλ)]2 δE |u|2,E

[
∥uI − u∥1,E + C hsE |u|1+s,E

]
|vh|1,E
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Applying Hölder’s inequality (4.3.4), we get

ι3 ≤ µC [Q(Cλ)]2 δ |u|2,Ωhs |u|1+s,Ω |vh|1,Ω. ( use ) (4.3.14)

Next we estimate,

ι4 = µ
∑

E∈Th

(
β(u) · ∇u, δE β(u) ·

[
Π0

p−1∇vh −∇vh
] )

E

≤ µ [Q(λ)]2
∑

E∈Th

(
∇u, δE

[
Π0

p−1∇vh −∇vh
] )

E

= µ [Q(λ)]2
∑

E∈Th

(
∇u−Π0

p−1∇u, δE ∇vh
)
E

≤ µ [Q(λ)]2
∑

E∈Th
|u− Π∇

p u|1,E δE |vh|1,E ( use Cauchy-Schwarz ineq., (5.22, [12]) )

≤ µ [Q(λ)]2
∑

E∈Th
C hsE |u|1+s,E δE |vh|1,E ( use (4.3.3) )

≤ µ [Q(λ)]2 δ C hs |u|1+s,Ω |vh|1,Ω. ( use Hölder’s inequality ) (4.3.15)

Using (4.2.11) and (4.2.5) we obtain

K12 ≤ µ
∑

E∈Th
δE [Q(λ)]2 |uI − Π∇

p uI |1,E |vh − Π∇
p vh|1,E.

Note the inequality,

|uI − Π∇
p uI |1,E ≤ |uI − u|1,E + |u− Π∇

p u|1,E + |Π∇
p (u− uI)|1,E

≤ 2 |uI − u|1,E + |u− Π∇
p u|1,E. (4.3.16)

Thus K12 ≤ µ
∑

E∈Th
δE [Q(λ)]2 [ 2 |uI − u|1,E + |u− Π∇

p u|1,E ] |vh − Π∇
p vh|1,E

≤ µ
∑

E∈Th
δE [Q(λ)]2 [ 2 |uI − u|1,E + C hsE |u|1+s,E ] |vh|1,E ( use (4.3.3) )

≤ µ δ [Q(λ)]2 [ 2 |uI − u|1,Ω + C hs |u|1+s,Ω ] |vh|1,Ω ( use Hölder’s ineq. )

≤ µ δ [Q(λ)]2C hs |u|1+s,Ω |vh|1,Ω. ( use (4.3.4) ) (4.3.17)

Combining the results (4.3.12), (4.3.13), (4.3.14), (4.3.15), and (4.3.17) we get the
required estimate (4.3.9).

Lemma 4.3. For any (·, u) ∈ B and its virtual interpolant uI ∈ V p
h , using (4.1.2), assump-

tions 4.2-4.4 and (4.2.12), we obtain,
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µ ch(uI ;uI , vh)− µ c(u;u, vh) ≤ C2 h
s |vh|1,Ω ∀ vh ∈ V k

h , (4.3.18)

where C2 := µ2Q(Cλ)C [ |u|1,Ω + h+ 1 ] |u|1+s,Ω.

Proof. Let us denote K2 := µ
[
ch(uI ;uI , vh)− c(u;u, vh)

]
. We have,

K2 = µ
∑

E∈Th

[
(β(Π0

puI) ·Π0
p−1∇uI , Π0

pvh )E − ( β(u) · ∇u, vh )E
]

+µ
∑

E∈Th

[
( r(Π0

puI),Π
0
pvh )E − ( r(u), vh )E

]
= K21 + K22.

Adding and subtracting the following terms to K21

µ
∑

E∈Th

(
[β(Π0

pu) + β(u) ] ·Π0
p−1∇u + β(u) · [Π0

p−1∇u−∇u ], Π0
pvh
)
E

we get

K21 = µ
∑

E∈Th

{ ( [
(β(Π0

puI)− β(Π0
pu) ) + (β(Π0

pu)− β(u) )
]
·Π0

p−1∇uI , Π0
pvh
)
E

+
(
β(u) ·

[
Π0

p−1∇(uI − u) + Π0
p−1∇u−∇u)

]
, Π0

pvh
)
E

+
(
β(u) · ∇u, Π0

pvh − vh
)
E

}
= l1 + l2 + l3. (4.3.19)

Using MVT, remark 4.5, (4.1.2), Cauchy-Schwarz inequality, generalised Hölder’s inequal-
ity, (4.3.6) and (4.3.5), we get,

l1 ≤ µ
∑

E∈Th
Q(Cλ) [ ∥Π0

p(uI − u)∥L6(E) + ∥Π0
pu− u∥L6(E) ] ∥Π0

p−1∇uI∥E ∥Π0
pvh∥L3(E)

≤ µ
∑

E∈Th
Q(Cλ) [ ∥uI − u∥1,E + ∥Π0

pu− u∥1,E ] |uI |1,E ∥vh∥1,E

≤ µQ(Cλ) [ ∥uI − u∥1,Ω + C hs |u|1+s,Ω ] |uI |1,Ω |vh|1,Ω ( use (4.3.2), Hölder’s ineq. )

≤ µCQ(Cλ)hs |u|1+s,Ω |u|1,Ω |vh|1,Ω. ( use (4.3.4) ) (4.3.20)

Using assumption 4.3, (4.1.2) and Cauchy-Schwarz inequality, we get,

l2 ≤ µ
∑

E∈Th
Q(Cλ) [ |uI − u|1,E + ∥Π0

p−1∇u−∇u∥E ] ∥vh∥E

≤ µ
∑

E∈Th
Q(Cλ) [ |uI − u|1,E + |Π∇

p u− u|1,E ] ∥vh∥E ( use ( 5.22,[12] ) )

≤ µ
∑

E∈Th
Q(Cλ) [ |uI − u|1,E + C hsE |u|1+s,E ] ∥vh∥E ( use (4.3.3) )

≤ µQ(Cλ)C hs |u|1+s,Ω |vh|1,Ω. ( use (4.3.4), Poincaré inequality ) (4.3.21)
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Now we have l3 := µ
∑

E∈Th

∑
i=1,2

(
βi(u)∂xi

u, Π0
pvh − vh

)
E

, where ∂xi
u := ∂u/∂xi.

t1 :=
(
βi(u) ∂xi

u, Π0
pvh − vh

)
E

≤ Q(Cλ)
(
∂xi
u− Π0

k−1∂xi
u, Π0

pvh − vh
)
E

≤ Q(Cλ) ∥∂xi
u− Π0

k−1∂xi
u∥E ∥Π0

pvh − vh ∥E

Using (4.3.2), we get,

t1 ≤ CQ(Cλ)hsE |∂xi
u|s,E hE |vh|1 ≤ CQ(Cλ)h1+s

E |u|1+s,E |vh|1.

Then, substituting t1 in l3 and applying Hölder’s inequality, we obtain,

l3 ≤ µCQ(Cλ)h1+s |u|1+s,Ω |vh|1,Ω. (4.3.22)

Adding and subtracting the terms µ
∑

E∈Th
( r(Π0

pu) + r(u),Π0
pvh )E to K22, we get,

K22 = µ
∑

E∈Th

[
( r(Π0

puI)− r(Π0
pu) + r(Π0

pu)− r(u), Π0
pvh )E + (r(u)− r(0), (Π0

p − I)vh)E
]
.

Using MVT, Cauchy-Schwarz inequality, Remark 4.5, (4.1.2) and (4.3.2), we get,

K22 ≤ µQ(Cλ)
∑

E∈Th

[
(Π0

p(uI − u) + (Π0
pu− u),Π0

pvh )E + (u, Π0
pvh − vh)E

]
≤ µQ(Cλ)

∑
E∈Th

[
(Π0

p(uI − u) + (Π0
pu− u),Π0

pvh )E + (u− Π0
pu, vh)E

]
≤ µQ(Cλ)

∑
E∈Th

(
∥uI − u∥E + 2 ∥Π0

pu− u∥E
)
∥vh∥E

≤ µQ(Cλ)
∑

E∈Th

(
∥uI − u∥E + C h1+s

E |u|1+s,E

)
∥vh∥E.

Using Hölder’s inequality, (4.3.4) and Poincaré inequality, we get,

K22 ≤ µCQ(Cλ)h1+s |u|1+s,Ω |vh|1,Ω. (4.3.23)

Adding (4.3.20), (4.3.21), (4.3.22) and (4.3.23), we obtain the assertion (4.3.18).

Lemma 4.4. For any (·, u) ∈ B and its virtual interpolant uI ∈ V p
h , using (4.1.2), assump-

tions 4.2-4.4 and (4.2.12), we obtain,

µ dh(uI ;uI , vh)− µ d(u;u, vh) ≤ C3 h
s |vh|1,Ω ∀ vh ∈ V k

h , (4.3.24)
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where C3 := µ2Q(Cλ)C
[
2h+ |u|1,Ω + 2Q(Cλ) δ h

]
|u|1+s,Ω.

Proof. Let us denote K3 := µ
[
dh(uI ;uI , vh)− d(u;u, vh)

]
. We have

K3 = µ
∑

E∈Th
{
(
−∇ · ϵΠ0

p−1∇uI , δE β(Π0
puI) ·Π0

p−1∇vh
)
E
− (−ϵ∆u, δE β(u) · ∇vh )E }

+µ
∑

E∈Th
{
(
r(Π0

puI), δE β(Π0
puI) ·Π0

p−1∇vh
)
E
− ( r(u), δE β(u) · ∇vh )E } = K31 +K32.

Let us define, K̂ = µ
∑

E∈Th

{ (
−∇ · ϵ (∇uI +∇u ), δE β(Π0

puI) ·Π0
p−1∇vh

)
E

+
(
−∇ · ϵ∇u, δE [β(Π0

pu) + β(u) ] · ∇vh
)
E

}
.

Adding and subtracting K̂ to K31 , we get,

K31 := µ
∑

E∈Th

(
−∇ · ϵ (Π0

p−1∇uI −∇uI ) +∇ · ϵ∇(u− uI), δE β(Π0
puI) ·Π0

p−1∇vh
)
E

+µ
∑

E∈Th

(
−∇ · ϵ∇u, δE

[
(β(Π0

puI)− β(Π0
pu) ) + (β(Π0

pu)− β(u) ) ] ·Π0
p−1∇vh

)
E

+µ
∑

E∈Th

(
−∇ · ϵ∇u, δE β(u) · [Π0

p−1∇vh −∇vh ]
)
E
= j1 + j2 + j3. (4.3.25)

Using Remark 4.5, (4.1.2), Cauchy-Schwarz inequality, (4.3.1), we get,

j1 ≤ µQ(Cλ)
∑

E∈Th

[
∥∇ · ϵΠ0

p−1∇uI −∇uI )∥E + ∥∇ · ϵ∇(u− uI)∥E
]
δE ∥Π0

p−1∇vh∥E

≤ µQ(Cλ)
∑

E∈Th
δE ϵ cinv h

−1
E

[
∥Π0

p−1∇uI −∇uI )∥E + ∥∇(u− uI)∥E
]
|vh|1,E

≤ µQ(Cλ)
∑

E∈Th
C hE

[
|Π∇

k uI − uI |1,E + |u− uI |1,E
]
|vh|1,E ( use (4.2.12), (5.22, [12]) )

≤ µQ(Cλ)
∑

E∈Th
C hE

[
|Π∇

k u− u|1,E + 3|u− uI |1,E
]
|vh|1,E ( use (4.3.16) )

≤ µQ(Cλ)C h1+s |u|1+s,Ω |vh|1,Ω. ( use Hölder’s inequality, (4.3.2), (4.3.3) ) (4.3.26)

Using MVT, Remark 4.5, (4.1.2), generalised Hölder’s inequality, (4.3.5), (4.3.6) we get,

j2 ≤ µQ(Cλ)
∑

E∈Th
δE ∥∇ · ϵ∇u∥E

[
∥Π0

p(uI − u)∥L3(E) + ∥Π0
pu− u∥L3(E) ] ∥Π0

p−1∇vh∥L6(E)

≤ µQ(Cλ)
∑

E∈Th
δE ∥∇ · ϵ∇u∥E

[
∥uI − u∥1,E + ∥Π0

pu− u∥1,E ] ∥Π0
p−1∇vh∥1,E

≤ µCQ(Cλ)
∑

E∈Th
δE ϵ h

−2
E |u|1,E

[
∥uI − u∥1,E + ∥Π0

pu− u∥1,E ] |vh|1,E ( use (4.3.1), (2.6, [82]) )

≤ µCQ(Cλ)
∑

E∈Th
|u|1,E

[
∥uI − u∥1,E + C hsE |u|1+s,E ] |vh|1,E ( use (4.2.12), (4.3.2) )

≤ µCQ(Cλ)hs |u|1,Ω |u|1+s,Ω |vh|1,Ω. ( use Hölder’s inequality, (4.3.4) ) (4.3.27)

102



Next j3 = µ
∑

E∈Th

(
−∇ · ϵ∇u, δE β(u) · [Π0

p−1∇vh −∇vh ]
)
E︸ ︷︷ ︸

:=t2

. We have,

t2 =
∑
i=1,2

(
βi(u) ϵ∆u, δE [ ∂xi

vh − Π0
k−1∂xi

vh ]
)
E

≤ Q(Cλ)
∑
i=1,2

ϵ
(
∆u− Π0

k−1∆u, δE ∂xi
vh
)
E

≤ Q(Cλ)
∑
i=1,2

δE ϵ ∥∆u− Π0
k−1∆u∥E ∥∂xi

vh∥E ( use Cauchy-Schwarz inequality )

≤ Q(Cλ)
∑
i=1,2

h2E C h
1−s
E |∆u|1−s,E ∥∂xi

vh∥E ( use (4.2.12), (4.3.2) )

≤ CQ(Cλ)h1+s
E |u|1+s,E |vh|1,E. (4.3.28)

Substituting (4.3.28) and using Hölder’s inequality, we obtain,

j3 ≤ µCQ(Cλ)h1+s |u|1+s,Ω |vh|1,Ω. (4.3.29)

We add and subtract the following term to K32

µ
∑

E∈Th

(
r(Π0

pu) + r(u), δE β(Π0
puI) ·Π0

p−1∇vh
)
E
+
(
r(u), δE [β(Π0

pu) + β(u) ] ·Π0
p−1∇vh

)
E
.

Then, we obtain,

K32 = µ
∑

E∈Th
µ
∑

E∈Th

(
[ r(Π0

puI)− r(Π0
pu) ] + [ r(Π0

pu)− r(u) ], δE β(Π0
puI) ·Π0

p−1∇vh
)
E

+µ
∑

E∈Th

(
r(u), δE [ (β(Π0

puI)− β(Π0
pu) ) + (β(Π0

pu)− β(u) ) ] ·Π0
p−1∇vh

)
E

+µ
∑

E∈Th

(
r(u), δE β(u) · [Π0

p−1∇vh −∇vh ]
)
E

= m1 +m2 +m3.

Using MVT, Remark 4.5, (4.1.2) and Cauchy-Schwarz inequality, we get,

m1 +m2 ≤ 2µ [Q(λ)]2
∑

E∈Th
δE [ ∥Π0

p(uI − u)∥E + ∥Π0
pu− u∥E ] ∥Π0

p−1∇vh∥E

≤ 2µ [Q(λ)]2
∑

E∈Th
δE [ ∥uI − u∥E + C h1+s

E |u|1+s,E ] |vh|1,E ( use (4.3.2) )

≤ µC [Q(λ)]2 δ h1+s |u|1+s,Ω |vh|1,Ω ( use Hölder’s inequality, (4.3.4) )(4.3.30)

Using Assumption 3 (Section 1.3), (4.1.2), r(0) = 0, Cauchy-Schwarz inequality, (4.3.2),
and Hölder’s inequality we obtain,
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m3 ≤ µQ(C λ)
∑

E∈Th

∑
i=1,2

(
r(u)− r(0), δE [ Π0

k−1∂xivh − ∂xivh ]
)
E

≤ µ [Q(λ)]2
∑

E∈Th

∑
i=1,2

(
u− Π0

k−1u, δE [ Π0
k−1∂xivh − ∂xivh ]

)
E

≤ µ [Q(λ)]2
∑

E∈Th
δE

∑
i=1,2

∥u− Π0
k−1u∥E ∥Π0

k−1∂xivh − ∂xivh∥E

≤ µ [Q(λ)]2
∑

E∈Th
δE

∑
i=1,2

C hsE |u|s,E hE |∂xivh|1,E

≤ µ [Q(λ)]2C δ h1+s |u|1+s,Ω |vh|1,Ω. (4.3.31)

Adding estimates (4.3.26), (4.3.27), (4.3.29), (4.3.30) and (4.3.31) we obtain the assertion
(4.3.24).

Lemma 4.5. For any (·, u) ∈ B and its virtual interpolant uI ∈ V p
h , using (4.1.2), Assump-

tions 4.2-4.4 (section 1.3) and (4.2.12), we obtain,

∥Mh(µ, uI(µ))−M(µ, u(µ))∥∗ ≤ C⋆ h
s, (4.3.32)

where ∥ · ∥∗ is defined in (4.2.20) and C⋆ = C1 + C2 + C3 is a positive constant.

Proof. For 0 ̸= vh ∈ Vh, let M := ⟨Mh(µ, uI(µ)) −M(µ, u(µ)), vh⟩. Using the defini-
tions (4.2.17) we have,

M = µ
[
bh(uI ;uI , vh)− b(u;u, vh) + ch(uI ;uI , vh)− c(u;u, vh) + dh(uI ;uI , vh)− d(u;u, vh)

]
.

Therefore, Lemma 4.2, Lemma 4.3 and Lemma 4.4 and the definition of ∥ · ∥∗ implies the
required estimate (4.3.32).

Now corresponding to M0 in (4.1.4) we consider an operator M : I × (H1
0 (Ω) ∩

L∞(Ω)) → H−1(Ω) such that

⟨M(µ,wh), vh ⟩ := µ
[
b(wh;wh, vh) + c(wh;wh, vh) + d(wh;wh, vh)

]
∀vh ∈ V p

h . (4.3.33)

Now the Fréchet derivative of the operator M denoted by DM(µ, ·) satisfies, for any
w ∈ H1

0 (Ω),

⟨DM(µ, u)w, v⟩ := µ
[
D1(w;u, v) +D2(w;u, v) +D3(w;u, v)

]
, (4.3.34)
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where

D1(w;u, v) =
∑

E∈Th
δE
[
(β(u) · ∇w, β(u) · ∇v )E + (w ∂uβ(u) · ∇u, β(u) · ∇v )E

+(β(u) · ∇u, w ∂uβ(u) · ∇v )E
]
, (4.3.35)

D2(w;u, v) =
∑

E∈Th
(β(u) · ∇w + w ∂ur(u) + w ∂uβ(u) · ∇u, v )E , and (4.3.36)

D3(w;u, v) =
∑

E∈Th
δE
[ (

−∇ · ϵΠ0
p−1∇u+ r(u), w ∂uβ(u) · ∇v

)
E

+
(
−∇ · ϵΠ0

p−1∇w + w ∂ur(u), β(u) · ∇v
)
E

]
. (4.3.37)

Next, for every u ∈ V p
h , we define a bounded linear operator D̂Mh(u) : I × V p

h → Yh,
such that for any w ∈ V p

h ,

⟨D̂Mh(µ, u)w, v⟩ := µ
[
D̂1(w;u, v) + D̂2(w;u, v) + D̂3(w;u, v)

]
, (4.3.38)

where,

D̂1(w;u, v) =
∑

E∈Th
δE
[ (

β(Π0
pu) ·Π0

p−1∇w + Π0
pw ∂uβ(Π

0
pu) ·Π0

p−1∇u, β(Π0
pu) ·Π0

p−1∇v
)
E

+
(
β(Π0

pu) ·Π0
p−1∇u, Π0

pw ∂uβ(Π
0
pu) ·Π0

p−1∇v
)
E

+S̃2 SE((I − Π∇
p )w, (I − Π∇

p )v)
]
, (4.3.39)

D̂2(w;u, v) =
∑

E∈Th

[ (
β(Π0

pu) ·Π0
p−1∇w, Π0

pv
)
E
+
(
Π0

pw ∂ur(Π
0
pu), Π

0
pv
)
E

+
(
Π0

pw ∂uβ(Π
0
pu) ·Π0

p−1∇u, Π0
pv
)
E

]
, and (4.3.40)

D̂3(w;u, v) =
∑

E∈Th
δE
[ (

−∇ · ϵΠ0
p−1∇u+ r(Π0

pu), Π
0
pw ∂uβ(Π

0
pu) ·Π0

p−1∇v
)
E

+
(
−∇ · ϵΠ0

p−1∇w + Π0
pw ∂ur(Π

0
pu), β(Π

0
pu) ·Π0

p−1∇v
)
E

]
. (4.3.41)

Lemma 4.6. Consider (4.1.2), Assumptions 4.2-4.4(section 1.3), (4.2.12) and (µ, uµ) ∈ B.

Let ∇ ·Π0
p−1∇uµ|E ∈ L∞(E), ∀E ∈ Th, then the following estimate is attained.

∥D̂Mh(µ, uI,µ)−DM(µ, uµ)∥L(V p
h ,Yh) ≤ C4 h, (4.3.42)

where ∥ · ∥L(Vh,Yh) = sup
0̸=zh∈Vh

∥ · ∥∗
|zh|1,Ω

.

Proof. As earlier, we denote u := uµ and uI := uI,µ. The following estimate will be used
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in the proof. Using triangle inequality, (4.3.2) and (4.3.4), we have,

∥Π0
puI − u∥1,Ω =

∑
E∈Th

∥Π0
puI − u∥1,E

≤
∑

E∈Th
∥Π0

puI − Π0
pu∥1,E +

∑
E∈Th

∥Π0
pu− u∥1,E

≤
∑

E∈Th
∥uI − u∥1,E +

∑
E∈Th

C hsE |u|1+s,E

≤ ∥uI − u∥1,Ω + C hs |u|1+s,Ω ≤ C hs |u|1+s,Ω. (4.3.43)

We estimate the required terms one by one.
Consider 0 ̸= wh, vh ∈ Vh. Let τ1 := µ [D̂1(wh;uI , vh)−D1(wh;u, vh)]. Then,

τ1 =
∑

E∈Th

{
δE
[ (

β(Π0
puI) ·Π0

p−1∇wh, β(Π
0
puI) ·Π0

p−1∇vh
)
E

− (β(u) · ∇wh, β(u) · ∇vh )E
]

+ δE
[ (

Π0
pwh ∂uβ(Π

0
puI) ·Π0

p−1∇uI , β(Π0
puI) ·Π0

p−1∇vh
)
E

− (wh ∂uβ(u) · ∇u, β(u) · ∇vh)E
]

+ δE
[ (

β(Π0
puI) ·Π0

p−1∇uI , Π0
pwh ∂uβ(Π

0
puI) ·Π0

p−1∇vh
)
E

− (β(u) · ∇u, wh ∂uβ(u) · ∇vh)E
]

+ δE S̃2 SE((I − Π∇
p )wh, (I − Π∇

p )vh)
}

= τ11 + τ12 + τ13 + τ14. (4.3.44)

To τ11, we add and subtract the term

∑
E∈Th

δE
(
[β(Π0

puI) + β(u) ] ·Π0
p−1∇wh + β(u) · ∇wh, β(u) ·Π0

p−1∇vh
)
E
.

Then, we get,

τ11 =
∑

E∈Th

{
δE
(
β(Π0

puI) ·Π0
p−1∇wh, [β(Π

0
puI)− β(u) ] ·Π0

p−1∇vh
)
E

+ δE
(
[β(Π0

puI)− β(u) ] ·Π0
p−1∇wh, β(u) ·Π0

p−1∇vh
)
E

+ δE
(
β(u) · [Π0

p−1∇wh −∇wh], β(u) ·Π0
p−1∇vh

)
E

+ δE
(
β(u) · ∇wh, β(u) · [Π0

p−1∇vh −∇vh]
)
E

}
.

Using Remark 4.5, (4.1.2), generalised Hölder’s inequality, (4.3.6), (4.3.43) and (4.3.3), we
get
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τ11 ≤ [Q(Cλ)]2
∑

E∈Th
δE
{
2 ∥Π0

p−1∇wh∥E ∥Π0
puI − u∥L3(E) ∥Π0

p−1∇vh∥L6(E)

+ ∥Π0
p−1∇wh −∇wh∥E ∥Π0

p−1∇vh∥E + ∥Π0
p−1∇wh∥E ∥Π0

p−1∇vh −∇vh∥E
}

≤ C [Q(Cλ)]2
∑

E∈Th
δE
{
2 |wh|1,E ∥Π0

puI − u∥1,E h−1
E |vh|1,E

+ |Π∇
k wh − wh|1,E |vh|1,E + |wh|1,E |Π∇

k vh − vh|1,E
}

( use (2.6,[82]), (5.22,[12]) )

≤ C [Q(Cλ)]2
∑

E∈Th
2 δE

{
|wh|1,E ∥Π0

puI − u∥1,E h−1
E |vh|1,E + C |wh|1,E |vh|1,E

}
≤ C [Q(Cλ)]2 h

[
C hs |u|1+s,Ω + 1

]
|wh|1,Ω |vh|1,Ω. ( use (4.2.12) ) (4.3.45)

Let us define,

t1∗ :=
∑

E∈Th
δE
[ (

Π0
pwh ∂uβ(u) ·Π0

p−1∇uI , β(Π0
puI) ·Π0

p−1∇vh
)
E

+
(
Π0

pwh ∂uβ(u) ·Π0
p−1∇uI , β(u) ·Π0

p−1∇vh
)
E

+
(
Π0

pwh ∂uβ(u) · ∇u+ wh ∂uβ(u) · ∇u, β(u) ·Π0
p−1∇vh

)
E

]
.

Adding and subtracting t1∗ to τ12, we get,

τ12 :=
∑

E∈Th
δE
[ (

Π0
pwh [ ∂uβ(Π

0
puI)− ∂uβ(u) ] ·Π0

p−1∇uI , β(Π0
puI) ·Π0

p−1∇vh
)
E

+
(
Π0

pwh ∂uβ(u) ·Π0
p−1∇uI , [β(Π0

puI)− β(u) ] ·Π0
p−1∇vh

)
E

+
(
Π0

pwh ∂uβ(u) · [Π0
p−1∇uI −∇u ] + [Π0

pwh − wh ] ∂uβ(u) · ∇u, β(u) ·Π0
p−1∇vh

)
E

+
(
wh ∂uβ(u) · ∇u, β(u) · [Π0

p−1∇vh −∇vh ]
)
E

]
(4.3.46)

Now estimating τ12, we obtain,

τ12 ≤
∑

E∈Th
[Q(Cλ)]2 δE

{
2 ∥Π0

pwh∥L6(E) ∥Π0
puI − u∥L6(E) ∥Π0

p−1∇uI∥L6(E) ∥Π0
p−1∇vh∥E

+∥Π0
pwh∥L6(E) ∥Π0

p−1∇uI −∇u∥E∥Π0
p−1∇vh∥L3(E)

+∥Π0
pwh − wh∥L6(E) ∥∇u∥L3(E) ∥Π0

p−1∇vh∥E
+∥wh∥L6(E) ∥∇u∥L3(E) ∥Π0

k−1∇vh −∇vh∥E
}

≤
∑

E∈Th
[Q(Cλ)]2 δE

{
2 ∥wh∥1,E ∥Π0

puI − u∥1,E h−1
E ∥∇uI∥E |vh|1,E

+
[
∥wh∥1,E ∥Π0

p−1∇uI −∇u∥E h−1
E + ∥Π0

pwh − wh∥1,E ∥∇u∥1,E
]
|vh|1,E

+∥wh∥1,E ∥∇u∥1,E |Π∇
k vh − vh|1,E

}
( use (4.3.6), (2.6,[82]) ).
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Using Hölder’s inequality, (4.2.12), |uI |1,Ω ≤ C|u|1,Ω, (4.3.2), (4.3.3), Poincaré inequality
and (4.3.43), we get,

τ12 ≤ C [Q(Cλ)]2 h
[
|u|1,Ω hs−1 |u|1+s,Ω + 1 + 2 |u|2,Ω

]
|wh|1,Ω |vh|1,Ω.(4.3.47)

Same result holds for τ13, i.e.

τ13 ≤ C [Q(Cλ)]2 h
[
|u|1,Ω hs−1 |u|1+s,Ω + 1 + 2 |u|2,Ω

]
|wh|1,Ω |vh|1,Ω. (4.3.48)

Next, using (4.2.5), (4.2.11), (4.2.12) and (4.3.3), we get,

τ14 ≤ C [Q(Cλ)]2 h |wh|1,Ω |vh|1,Ω. (4.3.49)

Substituting (4.3.45), (4.3.47), (4.3.48) and (4.3.49) into the equation (4.3.44), we get,

τ1 ≤ C hC41 |wh|1,Ω |vh|1,Ω, (4.3.50)

where C41 := [Q(Cλ)]2
[
4 + 2|u|2,Ω + hs−1 |u|s+1,Ω (h+ 4|u|1,Ω )

]
.

Let τ2 := µ [D̂2(wh;uI , vh)−D2(wh;u, vh)]. Then elaborating, we have

τ2 :=
∑

E∈Th

{ [ (
β(Π0

puI) ·Π0
p−1∇wh, Π

0
pvh
)
E
−
(
β(u) · ∇wh, vh

)
E

]
+
[ (

Π0
pwh ∂ur(Π

0
puI), Π

0
pvh
)
E
−
(
wh ∂ur(u), vh

)
E

]
+
[ (

Π0
pwh ∂uβ(Π

0
puI) ·Π0

p−1∇uI , Π0
pvh
)
E
−
(
wh ∂uβ(u) · ∇u, vh

)
E

] }
= τ21 + τ22 + τ23. (4.3.51)

To τ21, we add and subtract
∑
E∈T

(
β(u) ·Π0

p−1∇wh, Π
0
pvh + vh

)
E

obtaining,

τ21 =
∑
E∈T

[ (
[β(Π0

puI)− β(u) ] ·Π0
p−1∇wh, Π

0
pvh
)
E
+
(
β(u) ·Π0

p−1∇wh, Π
0
pvh − vh

)
E

+
(
β(u) · [Π0

p−1∇wh −∇wh ], vh
)
E

]
=

∑
E∈T

[ (
[β(Π0

puI)− β(u) ] ·Π0
p−1∇wh, Π

0
pvh
)
E
+
(
β(u) ·Π0

p−1∇wh, Π
0
pvh − vh

)
E

+
(
β(u) · ∇wh, vh − Π0

k−1vh
)
E

]
≤

∑
E∈Th

Q(Cλ)
[
∥Π0

puI − u∥L3(E) ∥Π0
p−1∇wh∥E ∥Π0

pvh∥L6(E)

+∥Π0
p−1∇wh∥E ∥Π0

pvh − vh∥E + ∥∇wh∥E ∥vh − Π0
k−1vh∥E

]
.
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Then, we get

τ21 ≤
∑

E∈Th
Q(Cλ)

[
∥Π0

puI − u∥1,E |wh|1,E ∥Π0
pvh∥1,E

+|wh|1,E C hE |vh|1,E + |wh|1,E C hE |vh|1,E
]

( use (4.3.6), (4.3.2) )

≤ CQ(Cλ)
[
∥Π0

puI − u∥1,Ω + h
]
|wh|1,Ω |vh|1,Ω ( use Hölder’s inequality )

≤ CQ(Cλ)h
[
hs−1 |u|s+1,Ω + 1

]
|wh|1,Ω |vh|1,Ω. ( (4.3.43) ) (4.3.52)

To τ22, we add and subtract
∑

E∈Th

(
wh ∂ur(Π

0
puI), Π

0
pvh + vh

)
E

obtaining,

τ22 :=
∑

E∈Th

[ (
[ Π0

pwh − wh ] ∂ur(Π
0
puI), Π

0
pvh
)
E
+
(
wh ∂ur(Π

0
puI), Π

0
pvh − vh

)
E

+
(
wh [ ∂ur(Π

0
puI)− ∂ur(u) ], vh

)
E

]
.

≤
∑

E∈Th
Q(Cλ)

[
∥Π0

pwh − wh∥E ∥Π0
pvh∥E + ∥Π0

pwh∥E ∥Π0
pvh − vh∥E

+∥wh∥L3(E) ∥Π0
puI − u∥L6(E) ∥vh∥E

]
≤ C

∑
E∈Th

Q(Cλ)
[
2hE |wh|1,E |vh|1,E + ∥Π0

puI − u∥1,E ∥wh∥1,E ∥vh∥1,E
]

≤ CQ(Cλ)h [ 2 + hs−1 |u|1+s,Ω ] |wh|1,E |vh|1,E. (4.3.53)

To τ23, we add and subtract the term∑
E∈Th

[ (
wh ∂uβ(Π

0
puI) ·Π0

p−1∇uI , Π0
pvh
)
E
+
(
wh ∂uβ(Π

0
puI) · ∇u, Π0

pvh + vh
)
E

]
.

τ23 =
∑

E∈Th

[ (
[ Π0

pwh − wh ] ∂uβ(Π
0
puI) ·Π0

p−1∇uI + wh ∂uβ(Π
0
puI) · [Π0

p−1∇uI −∇u ], Π0
pvh
)
E

+
(
wh ∂uβ(Π

0
puI) · ∇u, Π0

pvh − vh
)
E
+
(
wh [ ∂uβ(Π

0
puI)− ∂uβ(u) ] · ∇u, vh

)
E

]
≤

∑
E∈Th

Q(Cλ)
{
[ ∥(Π0

p − I)wh∥6,E ∥Π0
p−1∇uI∥E + ∥wh∥6,E ∥Π0

p−1∇uI −∇u∥E ] ∥Π0
pvh∥3,E

+∥wh∥L3(E) ∥∇u∥6,E ∥Π0
pvh − vh∥E + ∥wh∥6,E ∥Π0

puI − u∥6,E ∥∇u∥E ∥vh∥6,E
}

Simplifying further, we have

τ23 ≤ C
∑

E∈Th
Q(Cλ)

{
[hE |wh|1,E 2 |u|1,E + ∥wh∥1,E ∥Π0

p−1∇uI −∇u∥E ] ∥vh∥1,E

+[hE |u|2,E + ∥Π0
puI − u∥1,E |u|1,E ] ∥wh∥1,E ∥vh∥1,E

}
≤ CQ(Cλ)h

{
2 |u|1,Ω + hs−1 |u|s+1,Ω + |u|2,Ω + hs−1 |u|s+1,Ω |u|1,Ω

}
|wh|1,Ω |vh|1,Ω.

(4.3.54)
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Substituting (4.3.52), (4.3.53) and (4.3.54) into the equation (4.3.51), we get,

τ2 ≤ C hC42 |wh|1,Ω |vh|1,Ω, (4.3.55)

where C42 := Q(Cλ)
[
3 + |u|2,Ω + 2|u|1,Ω + hs−1 |u|s+1,Ω ( 3 + |u|1,Ω )

]
.

Let τ3 := µ [D̂3(wh;uI , vh)−D3(wh;u, vh)]. Then, we obtain,

τ3 :=
∑

E∈Th

{
δE
[ (

−∇ · ϵΠ0
p−1∇uI , Π0

pwh ∂uβ(Π
0
puI) ·Π0

p−1∇vh
)
E

−
(
−∇ · ϵΠ0

p−1∇u, wh ∂uβ(u) · ∇vh
)
E

]
+ δE

[ (
r(Π0

puI), Π
0
pwh ∂uβ(Π

0
puI) ·Π0

p−1∇vh
)
E

− ( r(u), wh ∂uβ(u) · ∇vh )E
]

+ δE
[ (

−∇ · ϵΠ0
p−1∇wh, β(Π

0
puI) ·Π0

p−1∇vh
)
E

−
(
−∇ · ϵΠ0

p−1∇wh, β(u) · ∇vh
)
E

]
+ δE

[ (
Π0

pwh ∂ur(Π
0
puI), β(Π

0
puI) ·Π0

p−1∇vh
)
E

− (wh ∂ur(u), β(u) · ∇vh )E
] }

= τ31 + τ32 + τ33 + τ34. (4.3.56)

To τ31, we add and subtract

∑
E∈Th

δE
(
−∇ · ϵΠ0

p−1∇u, [ Π0
pwh + wh ] ∂uβ(Π

0
puI) ·Π0

p−1∇vh
)
E
,

and
∑

E∈Th
δE
(
−∇ · ϵΠ0

p−1∇u, wh ∂uβ(Π
0
puI) · ∇vh

)
E

obtaining,

τ31 =
∑

E∈Th
δE
[ (

−∇ · ϵΠ0
p−1[∇uI −∇u ], Π0

pwh ∂uβ(Π
0
puI) ·Π0

p−1∇vh
)
E

+
(
−∇ · ϵΠ0

p−1∇u, [ Π0
pwh − wh ] ∂uβ(Π

0
puI) ·Π0

p−1∇vh
)
E

+
(
−∇ · ϵΠ0

p−1∇u, wh ∂uβ(Π
0
puI) · [Π0

p−1∇vh −∇vh ]
)
E

+
(
−∇ · ϵΠ0

p−1∇u, wh [ ∂uβ(Π
0
puI)− ∂uβ(u) ] · ∇vh

)
E

]
.

Using the assumption ∇ · Π0
p−1∇u|E ∈ L∞(E), ∀E ∈ Th, MVT, (4.1.2), generalised

Hölder’s inequality( with (4.3.6), we get,
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τ31 ≤ Q(Cλ)
∑

E∈Th
δE
[
∥ − ∇ · ϵΠ0

p−1(∇uI −∇u)∥E ∥Π0
pwh∥L3(E) ∥Π0

p−1∇vh∥L6(E)

+ϵ ∥∇ ·Π0
p−1∇u∥∞,E ∥Π0

pwh − wh∥E ∥Π0
p−1∇vh∥E

+ϵ ∥∇ ·Π0
p−1∇u∥∞,E ∥wh∥E ∥Π0

p−1∇vh −∇vh∥E
+ϵ ∥∇ ·Π0

p−1∇u∥∞,E ∥wh∥L3(E) ∥Π0
puI − u∥L6(E) ∥∇vh∥E

]
≤ Q(Cλ)

∑
E∈Th

δE ϵ C
[
h−1
E ∥Π0

p−1(∇uI −∇u)∥E ∥Π0
pwh∥1,E ∥Π0

p−1∇vh∥1,E ( use (4.3.1) )

+∥∇ ·Π0
p−1∇u∥L∞(E) hE |wh|1,E |vh|1,E + ∥∇ ·Π0

p−1∇u∥∞,E |wh|1,E |Π∇
p vh − vh|1,E

+∥∇ ·Π0
p−1∇u∥∞,E ∥wh∥1,E ∥Π0

puI − u∥1,E |vh|1,E
]

≤ Q(Cλ)h2C
[
hs−2 |u|1+s,Ω |wh|1,Ω |vh|1,Ω ( use (2.6,[82]), Hölder’s & (4.3.4) )

+∥∇ ·Π0
p−1∇u∥∞,E (h+ 1) |wh|1,Ω |vh|1,Ω

+∥∇ ·Π0
p−1∇u∥∞,E ∥wh∥1,Ω hs |u|s+1,Ω |vh|1,Ω

]
( use (4.3.43) )

≤ CQ(Cλ)h
[
hs−1 |u|s+1,Ω + (h2 + h+ hs+1 |u|s+1,Ω) ∥∇ ·Π0

p−1∇u∥∞,E

]
. (4.3.57)

To τ32, we add and subtract the terms
∑

E∈Th
δE
{ (

r(u), Π0
pwh ∂uβ(Π

0
puI) ·Π0

p−1∇vh
)
E
+(

r(u), wh ∂uβ(Π
0
puI) · (Π0

p−1∇vh +∇vh)
)
E

}
and to get

τ32 =
∑

E∈Th
δE
{ (

r(Π0
puI)− r(u), Π0

pwh ∂uβ(Π
0
puI) ·Π0

p−1∇vh
)
E

+
(
r(u), (Π0

pwh − wh) ∂uβ(Π
0
puI) ·Π0

p−1∇vh
)
E

+
(
r(u), wh ∂uβ(Π

0
puI) · (Π0

p−1∇vh −∇vh)
)
E

+
(
r(u), wh (∂uβ(Π

0
puI)− ∂uβ(u)) · ∇vh

)
E

}
.

Using the MVT, (4.1.2), generalised Hölder’s inequality, (4.2.12) and (4.3.6), we get,

τ32 ≤ [Q(Cλ)]2
∑

E∈Th
δE
{
∥Π0

puI − u∥L6(E) ∥Π0
pwh∥L3(E) ∥Π0

p−1∇vh∥E

+ ∥Π0
pwh − wh∥E ∥Π0

p−1∇vh∥E + ∥wh∥E ∥Π0
p−1∇vh −∇vh∥E

+ ∥Π0
puI − u∥L6(E) ∥wh∥L3(E) ∥∇vh∥E

}
≤ C [Q(Cλ)]2

∑
E∈Th

δE
{
∥Π0

puI − u∥1,E |wh|1,E |vh|1,E + hE |wh|1,E |vh|1,E

+ ∥wh∥E ∥Π∇
p vh − vh∥E + ∥Π0

puI − u∥1,E ∥wh∥1,E ∥vh∥1,E
}

≤ C [Q(Cλ)]2 h
[
2hs |u|1+s,Ω + h+ 1

]
|wh|1,Ω |vh|1,Ω. (4.3.58)
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To τ33, we add and subtract
∑

E∈Th
δE
(
−∇ · ϵΠ0

p−1∇wh, β(u) ·Π0
p−1∇vh

)
E

. Then

τ33 =
∑

E∈Th
δE
(
−∇ · ϵΠ0

p−1∇wh,
[
β(Π0

puI)− β(u)
]
·Π0

p−1∇vh + β(u) ·
[
Π0

p−1∇vh −∇vh
] )

E

≤ CQ(Cλ)
∑

E∈Th
δE ∥∇ · ϵΠ0

p−1∇wh∥E
[
∥Π0

puI − u∥L3(E) ∥Π0
p−1∇vh∥L3(E)

+∥Π0
p−1∇vh −∇vh∥E

]
≤ CQ(Cλ)

∑
E∈Th

δE ϵ h
−1
E cinv|wh|1,E

[
∥Π0

puI − u∥1,E ∥Π0
p−1∇vh∥1,E + |Π∇

k vh − vh|1,E
]

≤ CQ(Cλ)
∑

E∈Th
δE ϵ h

−1
E cinv|wh|1,E

[
∥Π0

puI − u∥1,E h−1
E |vh|1,E + |vh|1,E

]
≤ CQ(Cλ)h

[
cinv h

s−1 |u|s+1,Ω + h
]
|wh|1,Ω |vh|1,Ω. (4.3.59)

Estimating τ34 in a similar way as τ32, we obtain,

τ34 ≤ C [Q(Cλ)]2 h
[
2hs |u|1+s,Ω + h+ 1

]
|wh|1,Ω |vh|1,Ω. (4.3.60)

Substituting (4.3.57), (4.3.58), (4.3.59) and (4.3.60) into the equation (4.3.56), we get,

τ3 ≤ C hC43 |wh|1,Ω |vh|1,Ω, (4.3.61)

where C43 := Q(Cλ)
[
h1−s |u|s+1,Ω (1 + cinv + ∥∇ ·Π0

p−1∇u∥∞,E) + h+ (h2 + h)∥∇ ·
Π0

p−1∇u∥∞,E

]
+ 2 [Q(Cλ)]2

[
2hs |u|s+1,Ω + h+ 1

]
.

Applying the results (4.3.50), (4.3.55) and (4.3.61), we get the required estimate (4.3.42)
with C4 := C41 + C42 + C43.

In our next lemma, we show that the operatorMh is in fact locally Lipschitz continuous.
Let X be a Banach space over the domain ω and for any κ > 0, y ∈ X , we denote
B(y, κ) := { z ∈ X : |z − y|1,ω ≤ κ }.

Lemma 4.7. Consider (4.1.2), Assumptions 4.2-4.4(section 1.3), (4.2.12) and (µ, uµ) ∈ B
with virtual interpolant uI,µ. For u1, u2 ∈ B(uI,µ, ρ) ∩ V p

h with ρ ≤ Chq, q > 1 and for

sufficiently small h, the following estimate is obtained,

∥Mh(µ, u1)−Mh(µ, u2)− D̂Mh(µ, uI,µ)(u1 − u2)∥∗ ≤ Nh(ρ, |uI,µ|1,Ω)|u1 − u2|1,Ω,

where the function Nh(0, ·) satisfies,

lim
h→0

sup
µ∈I

Nh(0, θ) = 0 ∀θ ∈ R+ . (4.3.62)
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Proof. For notational convenience, as usual we denote u := uµ and uI := uI,µ. First, we
show the L∞ bound for elements in B(uI , ρ) ∩ V k

h .
Let vh ∈ B(uI , ρ) ∩ V p

h . Estimating similarly as in Remark 4.5, we get

∑
E∈Th

∥Π0
pvh∥L∞(E) ≤ C

∑
E∈Th

(
h−1
E ∥Π0

pvh∥E + |Π0
pvh|1,E + hE|Π0

pvh|2,E
)

≤ C
∑

E∈Th
(2 + cinv) ( |vh − uI |1,E + |uI |1,E )

≤ C ( |vh − uI |1,Ω + |uI |1,Ω ) ≤ C (hq + 2|u|1,Ω )

≤ C 3λ ≤ C λ. ( for sufficiently small h) (4.3.63)

Let us denote ξ := u1 − u2. Consider the inner product

⟨Mh(µ, u1)−Mh(µ, u2)− D̂Mh(µ, uI)ξ, vh ⟩. (4.3.64)

We estimate each terms in the expansion of (4.3.64) one by one.
Let J1 := µ

(
bh(u1;u1, vh) − bh(u2;u2, vh) − D̂1(ξ;uI , vh)

)
. Adding and subtracting

µ
∑

E∈Th

(
[β(Π0

pu1) + β(Π0
pu2) ] ·Π0

p−1∇u2, δE β(Π0
pu1) ·Π0

p−1∇vh
)
E

, we get,

J1 = µ
∑

E∈Th

{ (
β(Π0

pu1) ·Π0
p−1∇(u1 − u2), δE β(Π0

pu1) ·Π0
p−1∇vh

)
E

+
(
[β(Π0

pu1)− β(Π0
pu2) ] ·Π0

p−1∇u2, δE β(Π0
pu1) ·Π0

p−1∇vh
)
E

+
(
β(Π0

pu2) ·Π0
p−1∇u2, δE [β(Π0

pu1)− β(Π0
pu2) ] ·Π0

p−1∇vh
)
E

+δE S̃2 SE((I − Π∇
p )ξ, (I − Π∇

p )vh)
}
− D̂1(ξ;uI , vh).

≤ µC
∑

E∈Th

[ { (
β(Π0

pu1) ·Π0
p−1∇ξ, δE β(Π0

pu1) ·Π0
p−1∇vh

)
E

+
(
−β(Π0

puI) ·Π0
p−1∇ξ, δE β(Π0

puI) ·Π0
p−1∇vh

)
E

}
+
{ (

∂uβ(Π
0
px1) ·Π0

p−1∇u2, δE β(Π0
pu1) ·Π0

p−1∇vh
)
E

−
(
Π0

pξ ∂uβ(Π
0
puI) ·Π0

p−1∇uI , δEβ(Π0
puI) ·Π0

p−1∇vh
)
E

}
+
{ (

β(Π0
pu2) ·Π0

p−1∇u2, δE ∂uβ(Π0
px1) ·Π0

p−1∇vh
)
E

−
(
β(Π0

puI) ·Π0
p−1∇uI , δEΠ0

pξ ∂uβ(Π
0
puI) ·Π0

p−1∇vh
)
E

} ]
:= R1 +R2 +R3. (4.3.65)

where x1 := γ u1 + (1− γ)u2 for some γ ∈ (0, 1).
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Note that x1 ∈ B(uI , ρ) ∩ V k
h . Using (4.1.2), (4.2.5) and Hölder’s inequality, we get,

R1 ≤ µC δ |ξ|1,Ω |vh|1,E. (4.3.66)

To R2 adding and subtracting the term

µ
∑

E∈Th

(
Π0

pξ [ ∂uβ(Π
0
px1) + ∂uβ(Π

0
puI) ] ·Π0

p−1∇uI , δE β(Π0
pu1) ·Π0

p−1∇vh
)
E

we obtain

R2 = µC
∑

E∈Th

{ (
∂uβ(Π

0
px1) ·Π0

p−1∇(u2 − uI), δE β(Π0
pu1) ·Π0

p−1∇vh
)
E

+
(
[ ∂uβ(Π

0
px1)− ∂uβ(Π

0
puI) ] ·Π0

p−1∇uI , δE β(Π0
pu1) ·Π0

p−1∇vh
)
E

+
(
Π0

pξ ∂uβ(Π
0
puI) ·Π0

p−1∇uI , δE[β(Π0
pu1)− β(Π0

puI) ] ·Π0
p−1∇vh

)
E

}
Using (4.1.2), generalised Hölder’s inequality, (4.3.6), (2.6,[82]) and Poincaré inequality,
we get,

R2 ≤ µC
∑

E∈Th
δE
(
∥Π0

p−1∇(u2 − uI)∥1,E + ∥x1 − uI∥1,E ∥Π0
p−1∇uI∥1,E

+∥u1 − uI∥1,E ∥Π0
p−1∇uI∥1,E

)
∥ξ∥1,E |vh|1,E

≤ µC δ
(
h−1 |u2 − uI |1,Ω + [ |x1 − uI |1,Ω + |u1 − uI |1,Ω ]h−1 |uI |1,Ω

)
|ξ|1,Ω |vh|1,Ω

For any member zh ∈ B(uI , ρ) ∩ V p
h , we have,

|zh|1,Ω ≤ ρ+ |uI |1,Ω and |uI − zh|1,Ω ≤ ρ. (4.3.67)

Thus, we obtain,

R2 ≤ µC δ h−1 ρ ( 1 + 2|uI |1,Ω ) |ξ|1,Ω |vh|1,Ω. (4.3.68)

To R3 adding and subtracting the term

µ
∑

E∈Th

(
Π0

pξ β(Π
0
pu2) ·Π0

p−1∇uI , δE [ ∂uβ(Π
0
px1) + ∂uβ(Π

0
puI) ] ·Π0

p−1∇vh
)
E

we obtain the same result as (4.3.68). Therefore substituting the results (4.3.66) and
(4.3.68) into (4.3.65), we get,
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J1 ≤ µC δ
(
1 + 2h−1ρ ( 1 + 2|uI |1,Ω )

)
|ξ|1,Ω |vh|1,Ω. (4.3.69)

Let J2 := µ
(
ch(u1;u1, vh) − ch(u2;u2, vh) − D̂2(ξ;uI , vh)

)
. Adding and subtracting

µ
∑

E∈Th

(
β(Π0

pu2) ·Π0
p−1∇u1, Π0

pvh
)
E

to J2, we get,

J2 = µ
∑

E∈Th

{ (
r(Π0

pu1)− r(Π0
pu2), Π

0
pvh
)
E
+
(
[β(Π0

pu1)− β(Π0
pu2)] ·Π0

p−1∇u1, Π0
pvh
)
E

+
(
β(Π0

pu2) ·Π0
p−1∇ξ, Π0

pvh
)
E
− D̂2(ξ;uI , vh)

}
≤ µ

∑
E∈Th

{ (
r(Π0

pu1)− r(Π0
pu2), Π

0
pvh
)
E
+
(
Π0

pξ ∂uβ(Π
0
pw1) ·Π0

p−1∇u1, Π0
pvh
)
E

+
(
β(Π0

pu2) ·Π0
p−1∇ξ, Π0

pvh
)
E
− D̂2(ξ;uI , vh)

}
,

where w1 := ν u1 + (1− ν)u2 for some ν ∈ (0, 1).
Again, adding & subtracting µ

∑
E∈Th

(
Π0

pξ β(Π
0
puI) ·Π0

p−1∇u1, Π0
pvh
)
E

we get,

J2 ≤ µ
∑

E∈Th

{ (
Π0

pξ [∂ur(Π
0
pw2)− ∂ur(Π

0
puI)], Π

0
pvh
)
E

+
(
Π0

pξ [∂uβ(Π
0
pw1)− ∂uβ(Π

0
puI)] ·Π0

p−1∇u1, Π0
pvh
)
E

+
(
Π0

pξ ∂uβ(Π
0
puI) ·Π0

p−1∇(uI − u1), Π
0
pvh
)
E

+
(
Π0

p(u2 − uI) ∂uβ(Π
0
pw3) ·Π0

p−1∇ξ, Π0
pvh
)
E

}
where, w2 := ν̄ u2 + (1− ν̄)uI , w3 := ν̃ u1 + (1− ν̃)u2 for some ν̄, ν̃ ∈ (0, 1).

Note that w1, w2, w3 ∈ B(uI , ρ) ∩ V p
h . Using (4.1.2), generalised Hölder’s inequality,

(4.3.6) and Poincaré inequality, we get,

J2 ≤ µC
∑

E∈Th

{
∥w2 − uI∥E + ∥w1 − uI∥E |u1|1,E + |uI − u1|1,E + ∥u2 − uI∥E

}
∥ξ∥1,E ∥vh∥1,E

≤ µC
{
|w2 − uI |1,Ω + |w1 − uI |1,Ω |u1|1,Ω + |uI − u1|1,Ω + |u2 − uI |1,Ω

}
|ξ|1,Ω |vh|1,Ω

Therefore, using (4.3.67),

J2 ≤ µC ρ ( 3 + ρ+ |uI |1,Ω ) |ξ|1,Ω |vh|1,Ω (4.3.70)

Let J3 := µ
(
dh(u1;u1, vh) − dh(u2;u2, vh) − D̂3(ξ;uI , vh)

)
. Adding and subtracting
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µ
∑

E∈Th

(
−∇ · ϵΠ0

p−1∇u2 + r(Π0
pu2), δE β(Π0

pu1) ·Π0
p−1∇vh

)
E

to J3, we get,

J3 = µ
∑

E∈Th

{ (
−∇ · ϵΠ0

p−1∇ξ + [r(Π0
pu1)− r(Π0

pu2)], δE β(Π0
pu1) ·Π0

p−1∇vh
)
E

+
(
−∇ · ϵΠ0

p−1∇u2 + r(Π0
pu2), δE [β(Π0

pu1)− β(Π0
pu2)] ·Π0

p−1∇vh
)
E

−D̂3(ξ;uI , vh)
}

≤ µC
∑

E∈Th

[ { (
−∇ · ϵΠ0

p−1∇ξ +Π0
pξ ∂ur(Π

0
py1), δE β(Π0

pu1) ·Π0
p−1∇vh

)
E

+
(
r(Π0

pu2), δE Π0
pξ ∂uβ(Π

0
py2) ·Π0

p−1∇vh
)
E

+
(
r(Π0

puI), δE Π0
pξ ∂uβ(Π

0
puI) ·Π0

p−1∇vh
)
E

+
(
−∇ · ϵΠ0

p−1∇ξ + Π0
pξ ∂ur(Π

0
puI), δE β(Π0

puI) ·Π0
p−1∇vh

)
E

}
+
{ (

−∇ · ϵΠ0
p−1∇u2, δE ∂uβ(Π0

py2) ·Π0
p−1∇vh

)
E

+
(
−∇ · ϵΠ0

p−1∇uI , δE Π0
pξ ∂uβ(Π

0
puI) ·Π0

p−1∇vh
)
E

} ]
:= Y1 + Y2. (4.3.71)

where y1 := γ̄ u1 + (1− γ̄)u2, y2 := γ̃ u1 + (1− γ̃)u2 for some γ̄, γ̃ ∈ (0, 1).
Using (4.1.2), Cauchy-Schwarz ineq., (4.3.1), (4.2.12) and Hölder’s ineq. in Y1, we get,

Y1 ≤ µC
∑

E∈Th

(
2hE cinv |ξ|1,E + 3 δE ∥ξ∥E

)
|vh|1,E

≤ µC
(
2 cinv h+ 3 δ

)
|ξ|1,Ω |vh|1,Ω. ( use Poincaré inequality ) (4.3.72)

Adding & subtracting µ
∑

E∈Th

(
−∇ · ϵΠ0

p−1∇uI , δE Π0
pξ ∂uβ(Π

0
py2) ·Π0

p−1∇vh
)
E

to Y2

we get

Y2 = µC
∑

E∈Th

{ (
−∇ · ϵΠ0

p−1∇(u2 − uI), δE Π0
pξ ∂uβ(Π

0
py2) ·Π0

p−1∇vh
)
E

+
(
−∇ · ϵΠ0

p−1∇uI , δE Π0
pξ [ ∂uβ(Π

0
py2)− ∂uβ(Π

0
puI) ] ·Π0

p−1∇vh
)
E

}
Using (4.1.2), generalised Hölder’s inequality, (4.3.1), (4.3.6) and (2.6[82]), we get,

Y2 ≤ µC
∑

E∈Th
δE ϵ cinv h

−1
E

(
|u2 − uI |1,E + ∥y2 − uI∥1,E

)
∥ξ∥1,E ∥Π0

k∇vh∥1,E

≤ µC
∑

E∈Th
δE ϵ cinv h

−2
E

(
|u2 − uI |1,E + ∥y2 − uI∥1,E

)
∥ξ∥1,E |∇vh|1,E

≤ µC cinv
(
|u2 − uI |1,Ω + |y2 − uI |1,Ω

)
|ξ|1,Ω |vh|1,Ω ( use (A5,i) )

≤ µC cinv 2 ρ |ξ|1,Ω |vh|1,Ω. ( use (4.3.67) ) (4.3.73)
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Substituting (4.3.72) and (4.3.73) into (4.3.71), we get,

J3 ≤ µC ( 2 cinv h+ 3 δ + cinv 2 ρ ) |ξ|1,Ω |vh|1,Ω. (4.3.74)

Using the results (4.3.69), (4.3.70) and (4.3.74) we obtain

Nh(ρ, |uI |1,Ω) := µC
[
4 δ + 2cinv h+ δ h−1 ρ ( 1 + 2|uI |1,Ω )

+ρ ( 3 + ρ+ |uI |1,Ω + 2cinv )
]
. (4.3.75)

The results (4.3.69), (4.3.70) and (4.3.74), along with using (4.2.12), putting ρ = 0 in
(4.3.75), we validate the assertions of the lemma.

4.4 Convergence analysis

Let uh be the discrete solution to (4.2.13). We use the following natural norm for our
analysis,

|||vh|||2 = ϵ |vh|21,Ω +
∑

E∈Th
δE ∥β(uh) · ∇vh∥2E. (4.4.1)

We have proved the existence and uniqueness of discrete solution using the results given in
Section 3.4 of [80].

Theorem 4.1. Consider the following estimations

(i) ∥Th∥L(Yh,V
k
h ) ≤ C, and lim

h→0
∥T − Th∥L(Yh,V

k
h ) = 0. (4.4.2)

(ii) lim
h→0

|v − vI |1,Ω = 0 ∀v ∈ H1
0 (Ω), and (4.4.3)

lim
h→0

sup
µ∈I

∥Mh(µ, uI(µ))−M0(µ, u(µ))∥∗ = 0. (4.4.4)

(iii) ∀wh ∈ V k
h ∃ D̂Mh(µ,wh) ∈ L(V k

h , Yh),

lim
h→0

sup
µ∈I

∥D̂Mh(µ, uI,µ)−DM0(µ, u(µ))∥L(V k
h ,Yh)

= 0. (4.4.5)

(iv) for any zh, wh ∈ B(uI,µ, ρ) ∩ V k
h we have

∥Mh(µ, zh)−Mh(µ,wh)− D̂Mh(uI,µ)(zh − wh)∥L(V k
h ,Yh)

≤ Nh(ρ, |uI |1,Ω)|zh − wh|1,Ω, (4.4.6)

where Nh : R+ × R+ → R+ is continuous and monotonically increasing in

each variable and satisfy lim
h→0

Nh( 0, θ) = 0 ∀ θ ∈ R+ . (4.4.7)
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Assume that the conditions (4.4.2)-(4.4.7) are satisfied. Then,

1. there exists a neighbourhood N0 around the origin inH1
0 (Ω) and for sufficiently small

h, a unique branch { (µ, uhµ ) : µ ∈ I, uh,µ ∈ V p
h } of nonsingular solutions of (4.2.19),

such that

∀µ ∈ I, uµ − uh,µ ∈ N0 and (4.4.8)

2. the following error estimate holds,

∥uµ − uh,µ∥1,Ω ≤ C
{
∥u− uI∥1,Ω + ∥µ (T − Th)M0(µ, uµ)∥1,Ω
+∥Mh(µ, uI,µ)−M0(µ, uµ)∥∗

}
. (4.4.9)

Proof. Consider the discrete operator Th defined in (4.2.18). For any g ∈ Yh, we have
Thg ∈ V k

h and from (4.2.18) we note

min{1, α∗} |Thg|21,Ω ≤ ⟨ g, Thg ⟩ ≤ ∥g∥Ω |Thg|1,Ω.

Thus |Thg|1,Ω ≤ ∥g∥Ω ∀ g ∈ Yh implies that ∥Th∥Yh,V
k
h ) ≤ 1.

Considering the continuity and coercivity property of (4.1.5), definition (4.2.18) and
applying Cea’s lemma we get (similar to (4.19) in [81]),

lim
h→0

|v − vI |1,Ω = 0 ∀v ∈ H1
0 (Ω).

Note that the results (4.4.3) and (4.4.4) follows from (4.3.4) and Lemma 4.5, respectively.
Similarly the estimates (4.4.5) and (4.4.6) are obtained as a consequence of Lemma 4.6 and
Lemma 4.7, respectively.

Thus, the existence of a unique branch { (µ, uh(µ) ) : µ ∈ I, uh(µ) ∈ Vh } of nonsingular
solutions of (4.2.19) satisfying (4.4.8) is guaranteed.

For sufficiently smooth Tf , from the definitions of T , Th, Cea’s lemma and by using
(4.3.4), we obtain an estimate

|(Th − T )f |1,Ω ≤ C hk |Tf |k+1,Ω. (4.4.10)

In (4.4.9), applying (4.4.3), boundedness of T − Th in (4.4.2) and lemma 4.5, we get

∥uµ − uh(µ)∥1,Ω ≤ C hs |u|s+1,Ω. (4.4.11)
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Next, we prove two auxiliary lemmas that will be used in convergence estimates with
respect to ∥| · ∥|.

Lemma 4.8. Let uh ∈ V p
h be the discrete solution of (4.2.13) and uI be the virtual element

interpolant of an exact solution u. Then using (4.1.2), assumptions 4.2-4.4, (4.2.12) and

for ϕh = uI − uh the following estimate is obtained,

A({uI , uh} ;uI , ϕh)−A({uh, uh} ;uh, ϕh) ≥ C51 |||ϕh|||2 − C52 |ϕh|21,Ω,(4.4.12)

where C51 := min{1, α∗, ℘∗} and C52 := CQ(λ)
[
λQ(λ)δ + 1 + λ+ cinvh+ δ

]
.

Proof. First we consider A1 := ah(uI , ϕh)− ah(uh, ϕh) = ah(ϕh, ϕh). Then using (4.2.5)
and the inequality ∥(I −Π0

p−1)∇ϕh∥E ≤ ∥∇(I − Π∇
p )ϕh∥E (see [12]), we get,

A1 ≥ min{1, α∗} ϵ |ϕh|21,Ω. (4.4.13)

Along the lines of remark 4.5, we get the estimate,

∥Π0
puh∥∞,E ≤ C λ. (4.4.14)

Second, let A2 := bh({uI , uh};uI , ϕh)− bh({uh, uh};uh, ϕh). Adding and subtracting the
term

∑
E∈Th

(
β(Π0

puh) ·Π0
p−1∇uI , δE β(Π0

puh) ·Π0
p−1∇ϕh

)
E

, we get,

A2 := bh(uh;ϕh, ϕh) +
∑

E∈Th

(
[β(Π0

puI)− β(Π0
puh)] ·Π0

p−1∇uI , δE β(Π0
puh) ·Π0

p−1∇ϕh

)
E

≥ ℘∗ b({uh, uh};ϕh, ϕh) + A21. ( use (4.2.10) ) (4.4.15)

Using the procedure in remark 4.5 we get the estimate,

∀E ∈ Th, ∥Π0
pϕh∥∞,E ≤ C |ϕh|1,E. (4.4.16)

Using (4.1.2) and the generalised Hölder’s inequality (with 1
∞ = 0), we get,

|A21| ≤ C [Q(λ)]2
∑

E∈Th
δE ∥Π0

pϕh∥∞,E |uI |1,E |ϕh|1,E

≤ C [Q(λ)]2
∑

E∈Th
δE 2 |u|1,E |ϕh|21,E ( use (4.4.16) )

≤ C λ [Q(λ)]2 δ |ϕh|21,Ω. (4.4.17)
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Thus, from (4.4.15) and (4.4.17), we get,

A2 ≥ ℘∗
∑

E∈Th
δE ∥β(uh) · ∇ϕh∥2E − C λ [Q(λ)]2 δ |ϕh|21,Ω. (4.4.18)

Third, we consider A3 := ch(uI ;uI , ϕh) − ch(uh;uh, ϕh). To this adding and subtracting
the term

∑
E∈Th

(
β(Π0

puh) ·Π0
p−1∇uI , Π0

pϕh

)
E

, we get,

|A3| =
∣∣ ∑

E∈Th

{ (
[r(Π0

puI)− r(Π0
puh)] + β(Π0

puh) ·Π0
p−1∇ϕh, Π

0
pϕh

)
E

+
(
[β(Π0

puI)− β(Π0
puh)] ·Π0

p−1∇uI , Π0
pϕh

)
E

}
≤ CQ(λ)

∑
E∈Th

{
∥ϕh∥2E + ∥ϕh∥E |ϕh|1,E + ∥Π0

pϕh∥L∞(E) |uI |1,E ∥ϕh∥E
}

≤ CQ(λ)
∑

E∈Th

{
∥ϕh∥2E + ∥ϕh∥E |ϕh|1,E + |ϕh|1,E |uI |1,E ∥ϕh∥E

}
≤ CQ(λ)

{
∥ϕh∥2Ω + ∥ϕh∥Ω |ϕh|1,Ω + |ϕh|1,Ω 2 |u|1,Ω ∥ϕh∥Ω

}
≤ CQ(λ) (1 + λ) |ϕh|21,Ω.

Thus we obtain the inequality,

A3 ≥ −CQ(λ) (1 + λ) |ϕh|21,Ω. (4.4.19)

Lastly, we estimate |A4| := |dh(uh;uI , ϕh)− dh(uh;uh, ϕh)|. Then,

|A4| =
∣∣ ∑
E∈Th

{ (
−∇ · ϵΠ0

p−1∇ϕh, δE β(Π0
puh) ·Π0

p−1∇ϕh

)
E

+
(
[r(Π0

puI)− r(Π0
puh)], δE β(Π0

puh) ·Π0
p−1∇ϕh

)
E

} ∣∣
≤ CQ(λ)

∑
E∈Th

(
cinv hE |ϕh|21,E + δE ∥ϕh∥E |ϕh|1,E

)
( use (4.3.1), (A1) )

≤ CQ(λ)( cinv h+ δ ) |ϕh|21,Ω.

Thus, A4 ≥ −CQ(λ)( cinv h+ δ ) |ϕh|21,Ω. (4.4.20)

Combining the results (4.4.13), (4.4.18), (4.4.19) and (4.4.20) we get the assertion (4.4.12).

Lemma 4.9. Let uh ∈ V p
h be the discrete solution of (4.2.13) and uI be the virtual element

interpolant of an exact solution u. Then using (4.1.2), Assumptions 4.2-4.4, (4.2.12) and
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for ϕh = uI − uh the following estimate is obtained,

A({uI , uh} ;uI , ϕh)−A({u, uh} ;u, ϕh) ≤ C6 h
2s (ϵ+ h), (4.4.21)

for some constant C6 > 0.

Proof. Let ψ := uI − u. We have by (4.4.11) and (4.3.4),

|ϕh|1,Ω ≤ |ψh|1,Ω + |u− uh|1,Ω ≤ C hs |u|s+1,Ω + C hs ≤ C hs. (4.4.22)

Similarly, using (4.3.4), we have,

|ψh|1,Ω ≤ C hs. (4.4.23)

Consider, Z1 := ah(uI , ϕh)− ah(u, ϕh) = ah(ψh, ϕh). Then,

Z1 ≤ C
∑

E∈Th

(
ϵ |ψh|1,E |ϕh|1,E + ϵ α∗ |ψh|1,E |ϕh|1,E

)
≤ C ϵ (1 + α∗) |ψh|1,Ω |ϕh|1,Ω ≤ C ϵh2s ( use (4.4.22) and (4.4.23) ). (4.4.24)

Now, let Z2 := bh({uI , uh} ;uI , ϕh)− bh({u, uh} ;u, ϕh). Adding and subtracting the term∑
E∈Th

(
β(Π0

pu) ·Π0
p−1∇uI , δE β(Π0

puh) ·Π0
p−1∇ϕh

)
E

, we get,

Z2 =
∑

E∈Th

{ (
[β(Π0

puI)− β(Π0
pu)] ·Π0

p−1∇uI , δE β(Π0
puh) ·Π0

p−1∇ϕh

)
E

+
(
β(Π0

pu) ·Π0
p−1∇ψh, δE β(Π0

puh) ·Π0
p−1∇ϕh

)
E
+ δE S̃2 SE((I − Π∇

p )ψh, (I − Π∇
p )ϕh)

}
≤ C [Q(λ)]2

∑
E∈Th

δE
(
∥ψh∥E |uI |1,E |ϕh|L∞(E) + (1 + α∗) |ψh|1,E |ϕh|1,E

)
≤ C [Q(λ)]2

∑
E∈Th

δE (λ+ 1 + α∗ ) ∥ψh∥1,E |ϕh|1,E ( use (4.4.16))

≤ C (λ+ 1 + α∗ ) δ |ψh|1,Ω |ϕh|1,Ω ( use Hölder’s and Poincaré inequality )

≤ C hh2s ( use (4.4.23), (4.4.22) and (4.2.12) ). (4.4.25)

Next, we consider Z3 := ch(uI ;uI , ϕh) − ch(u;u, ϕh). Adding and subtracting the term∑
E∈Th

(
β(Π0

pu) ·Π0
p−1∇uI , Π0

pϕh

)
E

, we get,

Z3 =
∑

E∈Th

{ (
[r(Π0

puI)− r(Π0
pu)] + β(Π0

pu) ·Π0
p−1∇ψh, Π

0
pϕh

)
E

+
(
[β(Π0

puI)− β(Π0
pu)] ·Π0

p−1∇uI , Π0
pϕh

)
E

}
.
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Estimating the term Z3, we get,

Z3 ≤ CQ(λ)µ2

∑
E∈Th

ϵ
{
∥ψh∥E ∥ϕh∥E + ∥ψh∥E |uI |1,E ∥Π0

pϕh∥L∞(E) + |ψh|1,E ∥ϕh∥E
}

≤ CQ(λ)µ2

∑
E∈Th

ϵ
{
∥ψh∥E ∥ϕh∥E + ∥ψh∥E |uI |1,E |ϕh|1,E + |ψh|1,E ∥ϕh∥E

}
≤ C ϵ ( 2 + |uI |1,Ω ) |ψh|1,Ω |ϕh|1,Ω ( use Hölder’s and Poincaré inequality )

≤ C ϵ h2s. (4.4.26)

Finally, we have Z4 := dh(uh;uI , ϕh)− dh(uh;u, ϕh). Therefore,

Z4 =
∑

E∈Th

(
−∇ · ϵΠ0

p−1∇ψh + [r(Π0
puI)− r(Π0

pu)], δE β(Π0
puh) ·Π0

p−1∇ϕh

)
E

≤ CQ(λ)
∑

E∈Th
δE
(
ϵ cinv h

2
E |ψh|1,E + ∥ψh∥E

)
|ϕh|1,E

≤ C h |ψh|1,Ω |ϕh|1,Ω ≤ C hh2s. (4.4.27)

Combining the estimates (4.4.24)- (4.4.27), we get the desired result (4.4.21).

Now using auxillary lemma 4.8 and lemma 4.9, we obtain the following error estimate
theorem.

Theorem 4.2. Let us consider (4.1.2), Assumptions 4.2-4.4, (4.2.12). Let uh ∈ V p
h be the

discrete solution to (4.2.13) and u ∈ H1
0 (Ω) be the exact solution satisfying (4.1.3) with

u ∈ Hs+1(Ω). Then, for sufficiently small h, we have,

∥|u− uh∥| ≤ C hk (
√
h+

√
ϵ). (4.4.28)

Proof. From lemma 4.8, lemma 4.9 and (4.4.22), we have

∥|uI − uh∥|2 ≤
(

C52

ϵ0C51

+
C6

C51

)
h2s (ϵ+ h). (4.4.29)

Next, using (4.3.4), (4.2.12) we get,

∥|u− uI∥|2 = ϵ|u− uI |21,Ω +
∑
E∈Th

δE ∥β(uh) · ∇(u− uI)∥2E

≤ C ϵh2s |u|21+s,Ω + C [Q(λ)]2 h2s+1 |u|21+s,Ω

≤ C7 h
2s(ϵ+ h), (4.4.30)

where C7 := C (1 + [Q(λ)]2) |u|21+s,Ω.
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Substituting the estimates (4.4.29) and (4.4.30), we obtain,

∥|u− uh∥|2 ≤ C [∥|u− uI∥|2 + ∥|uI − uh∥|2] ≤ C h2s(ϵ+ h). (4.4.31)

4.5 Numerical Experiments

In this section, we perform numerical experiments to validate our theoretical conver-
gence estimate derived in Theorem 4.2. As the model problem is nonlinear, the discrete
scheme (4.2.13) results in nonlinear system of equations. In the first experiment, we solve
this system using Newton’s method and show the obtained rate of convergence using con-
vergence plots. However, the numerical solution obtained using this approach is time con-
suming. In order to improve the time efficiency, that is, to reduce CPU time taken to solve
the system, we perform the two-grid approach (see [79]) and compare the performance of
both these techniques in our second numerical test. In the two-grid method, we consider
two VEM spaces V p

h and V p
h with mesh diameter h < H . At first, we obtain a discrete

solution uH of (4.2.13) in the coarse space V p
h using the standard Newton’s method. Then,

at the finer space V p
h , we incorporate uH into the discrete scheme and perform only two

Newton’s iterations, to obtain the solution uh. In order to obtain the optimal accuracy, we
consider h ≤ H2.

(a) (b)

Figure 4.1: Representative Voronoi and non-convex mesh employed in this study.
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We have considered two types of meshes namely regular Voronoi and non-convex mesh
on a square domain for the considered numerical tests. For step size h = 1/5, we have
shown the sample meshes in Figure 4.1.
Let u,uh represent the exact and discrete solution, respectively. In the examples, we eval-
uate the H1(Ω) semi-norm and the energy norm denoted by eh,1 and eh,∥|·∥|, defined as
follows,

e2h,1 =
∑
E∈Th

∥∇(u− Π∇
p uh)∥2E,

e2h,∥|·∥| =
∑
E∈Th

(
∥
√
K∇(u− Π∇

p uh)∥2E + τE∥β(Π0
puh) · ∇(u− Π∇

p uh)∥2E
)
.

4.5.1 Example 1

Consider the unit square domain Ω = [0, 1] × [0, 1] and choose the exact solution
u(x, y) := x y sin(πx) sin(πy). The coefficients are taken as ϵ = 10−6, β(u) = (u, u)T

and r(u) = 2u+ f , where function f is defined such that u satisfies (4.1.1).
The convergence graphs are shown in Figure 4.2 for the H1 semi-norm and energy norm,
and for VEM orders 1,2 and 3,respectively. As predicted in Theorem 4.2, we observe that
the method converges numerically to the expected rate of convergence.

4.5.2 Example 2

Consider the unit square domain Ω = [0, 1] × [0, 1] and choose the exact solution
u(x, y) := e2 x (x− 1)2 y (y− 1)2. The coefficients are taken as ϵ = 10−6, β(u) = (u, u)T

and r(u) = 5u+ f , where function f is determined such that u satisfies (4.1.1).

As mentioned in the numerical setting (Section 4.5), in order to reduce the computa-
tional cost involved in solving the nonlinear system of equations, we have used two-grid
approach. Table 4.1 and Table 4.2 shows the comparison between Newton’s method and
two-grid approach for Voronoi mesh for the VEM order k = 1 and k = 2, respectively. We
observe from the tables that CPU time of the two-grid method is halved compared to the
Newton’s method when the mesh diameters are decreased. Tables 4.3 and 4.4, shows the
CPU time comparison for the non-convex mesh. Similar to Voronoi mesh case, two-grid
approach takes lesser time than the Newton’s method on a single grid.
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Figure 4.2: Rate of convergence plot in the H1 semi-norm and energy norm for (a)-(b)
Voronoi mesh and (c)-(d) Non-convex mesh for VEM orders k = 1, 2 and 3.

Newton’s method Two-grid method

h eh,∥|·∥| rate Time H eh,∥|·∥| rate Time

1/8 1.689365e−3 - 2.99 1/4 1.536699e−3 - 2.38

1/16 7.071470e−4 1.25 12.71 1/4 5.071543e−4 1.59 6.41

1/32 2.756350e−4 1.36 51.39 1/8 1.835257e−4 1.47 25.01

Table 4.1: CPU time comparison: Newton’s method and two-grid method for the VEM
order k = 1 using Voronoi mesh.
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Newton’s method Two-grid method

h eh,∥|·∥| rate Time H eh,∥|·∥| rate Time

1/8 9.361893e−5 - 2.56 1/4 9.361952e−5 - 2.24

1/16 1.329525e−5 2.82 14.05 1/4 1.329529e−5 2.83 6.81

1/32 2.485511e−6 2.41 112.70 1/8 2.485511e−6 2.42 55.11

Table 4.2: CPU time comparison: Newton’s method and two-grid method for the VEM
order k = 2 using Voronoi mesh.

Newton method Two-grid method

h eh,∥|·∥| rate Time H eh,∥|·∥| rate Time

1/8 2.341559e−3 - 2.33 1/4 2.223864e−3 - 1.41

1/16 1.052441e−3 1.15 5.44 1/4 7.758496e−4 1.52 4.42

1/32 4.166264e−4 1.34 41.39 1/8 2.650724e−4 1.55 19.74

Table 4.3: CPU time comparison: Newton’s method and two-grid method for the VEM
order k = 1 using non-convex mesh.

Newton method Two-grid method

h eh,∥|·∥| rate Time H eh,∥|·∥| rate Time

1/8 2.260889e−4 - 1.95 1/4 2.260918e−4 - 1.33

1/16 4.089832e−5 2.46 9.89 1/4 4.090097e−5 2.47 4.95

1/32 6.897373e−6 2.57 75.09 1/8 6.897400e−6 2.57 37.40

Table 4.4: CPU time comparison: Newton’s method and two-grid method for the VEM
order k = 2 using non-convex mesh.

4.6 Summary

In this article, we have analysed the SUPG stabilized Virtual element method for quasi-
linear convection-diffusion-reaction equation. We have used suitable polynomial projection
operators and VEM stabilizers with appropriate coefficients, in the formulation of the dis-
crete scheme. This ensures computablity and stability of the VEM discretisation. Most
importantly, we have proved the existence and uniqueness of discrete solutions approx-
imating the branch of solutions. We also proved the convergence estimate by showing
the optimal rate of convergence in the energy norm and H1 seminorm. We conducted
numerical experiments using higher order virtual element method of orders p = 1, 2, 3.
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Numerical simulation of the nonlinear problem over a fine grid is always time-consuming
and thus computationally expensive. In order to address this issue, we use two-grid method
which solves the nonlinear equations on two grids of different sizes, which significantly
reduces the time complexity. We have performed the numerical experiments with the two-
grid method and compared it over the standard Newton iterative approach. We observed
from the tabulated results that CPU time of the two-grid method is halved compared to
the Newton’s method, for very fine mesh that is, when the mesh diameters are decreased.
Also, we note that the two-grid performs efficiently without compromising on the accuracy,
independent of the type of mesh.
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Chapter 5

Virtual Element Analysis of Nonlocal Cou-
pled Time-dependent Reaction-Diffusion
Equations on Polygonal Meshes

We present a virtual element framework for the nonlocal coupled time-dependent reaction-
diffusion problem. Such problems find nitsche applications in many fields of applied sci-
ence and engineering, for example in modelling epidemics [83, 84], polymerization [85],
tumor growth modeling [86], to name a few. The nonlocal coupled time-dependent reaction-
diffusion problems belongs to a wider class of nonlinear problems, namely the nonlocal
coupled parabolic problems. Henceforth, we shall address this problem with the latter
terminology. In [87], the authors proved the existence and the uniqueness of the analytical
solution of the nonlocal coupled parabolic problem. Numerical solutions based on the finite
element method (FEM) and the virtual element method have been attempted in [88, 89]. In
[88], author employed the conforming linear finite element method for the discretization of
the non-local coupled parabolic problems.

In contrast to the FEM, the direct discretization of the nonlocal term will not be com-
putable. Using the projection operator, the nonlocal term is discretized which is computable
from the degrees of freedom related to the virtual element space. However, the presence of
nonlocal coefficients in the system not only makes the computation of the Jacobian more
expensive in Newton’s method, but also destroys the sparsity structure of the Jacobian,
consequently causing memory constrains and slowing of data processing, for large degrees
of freedom. Following [90], an analogous approach is employed to rewrite the nonlinear
system, such that the sparsity of the Jacobian is retained. Moreover, a linearized scheme
for the coupled nonlocal parabolic problem is introduced that yields optimal order of con-
vergence in both the space and the time variables. The nonlocal coefficients and the load

128



terms can be computed from the previous steps and hence the fully discrete system reduces
to a system of linear equations which can be computed easily.

5.0.1 Notations

Consider a convex polygonal domain Ω ⊂ Rd where d = 2, 3 represents the dimension
of the domain, with Lipschitz boundary ∂Ω. We define the final time T and the time
interval I = [0, T ]. Further, we denote L2(Ω), the space of square integrable functions
with standard inner-product (ϕ, ψ)Ω :=

∫
Ω
ϕψ dΩ. For each positive integer s ∈ N, we

define Hs(Ω), the Sobolev space with standard norm ∥ϕ∥s :=
( ∑

0≤α≤s

∥Dαϕ∥2
)1/2

, where

Dαϕ denotes αth partial derivative of ϕ. Moreover, the function space L2(0, T ;Hs(Ω))

consists of function ϕ such that for almost all t ∈ [0, T ], ϕ(·, t) ∈ Hs(Ω) with the norm

∥ϕ∥L2(0,T,Hs(Ω)) :=
(∫ T

0

∥ϕ(t)∥2s
)1/2

; ∥ϕ∥L∞(0,T,Hs(Ω)) = ess sup
0≤t≤T

∥ϕ(t)∥s.

In addition, we define Pk(E), the space of all polynomials of degree less than or equal to k
on E and for a function v, the first and the double derivatives with respect to t are denoted
by Dtv, Dttv, respectively.

5.1 The continuous problem

Let fi(u, v) ∈ L2(Ω, I) be the force functions for i ∈ {1, 2}, and u0, and v0 be the
initial guess for the solutions u, v, respectively. The continuous problem is then given by:
find (u, v) such that for t ∈ [0, T ], we have:

Dtu−A1(g1(u), g2(v))∆u = f1(u, v) in Ω× (0, T ), (5.1.1)

Dtv −A2(g1(u), g2(v))∆v = f2(u, v) in Ω× (0, T ), (5.1.2)

u(x, t) = v(x, t) = 0 on ∂Ω× (0, T ), (5.1.3)

u(x, 0) = u0(x) on Ω, (5.1.4)

v(x, 0) = v0(x) on Ω, (5.1.5)

where gi(ω) :=
∫

Ω
li(x)ω dΩ for ω(·, t) ∈ L2(Ω) for almost all t ∈ [0, T ] and li(x) ∈

L2(Ω). Since the diffusive coefficients A′
is are dependent on the global behaviour of the

solution, the problem is termed nonlocal.
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Further, we will make some assumptions on the model problem in order to derive the
theoretical estimates in the later section.

Assumption 5.1.

• For i ∈ {1, 2}, Ai(·, ·) : R2 → R is bounded i.e., 0 < m0 < Ai(·, ·) < M , where
m0 and M are positive constants.

• Ai(·, ·) : R2 → R is a Lipschitz continuous i.e

|Ai(r1, s1)−Ai(r2, s2)| ≤ LA(|r1 − r2|+ |s1 − s2|) ∀(ri, si) ∈ R× R. (5.1.6)

• For i ∈ {1, 2}, the right hand side force function, fi are Lipschitz continuous w.r.t. u
and v. i.e.,

|fi(u1, v1)− fi(u2, v2)| ≤ LF (|u1 − u2|+ |v1 − v2|) ∀u1, u2, v1, v2 ∈ R. (5.1.7)

Multiplying equation (5.1.1) by the test function φ and (5.1.2) by test function ψ and
employing divergence theorem, we derive the continuous weak formulation: Find u, v ∈
L2(0, T ;H1

0 (Ω) ∩ C(0, T ;L2(Ω)) and Dtu, Dtv ∈ L2(0, T ;H−1(Ω)) for almost all t ∈
[0, T ] such that

d

dt
(u, φ) +A1(g1(u), g2(v))(∇u,∇φ) = ⟨f1(u, v), φ⟩ in D′(0, T ) ∀φ ∈ V = H1

0 (Ω),

(5.1.8)
d

dt
(v, ψ) +A2(g1(u), g2(v))(∇v,∇ψ) = ⟨f2(u, v), ψ⟩ in D′(0, T ) ∀ψ ∈ V = H1

0 (Ω),

(5.1.9)

u(x, t) = v(x, t) = 0 for (x, t) ∈ ∂Ω× (0, T ), (5.1.10)

u(x, t) = u0(x) and v(x, t) = v0(x) for x ∈ Ω, (5.1.11)

where D′(0, T ) is the space of distributions on (0,T) and ⟨·, ·⟩ denotes the V ′− duality
bracket. The existence and the uniqueness of the weak solution satisfying equation (5.1.8)
to (5.1.11) can be easily proved using Brouwer’s fixed point arguments [91].

Theorem 5.1. Let the assumption 5.1 hold. Then, there exists a unique solution (u, v) ∈
H1

0 (Ω)×H1
0 (Ω) of the problem (5.1.8) - (5.1.11).

Using the assumption 2, Schauder’s fixed point theorem and proceeding analogously as
in [91, Theorem 2.1], we get the desired result.
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5.2 Virtual Element Methods

In this section, we consider the necessary assumptions on the mesh elements and dis-
cuss the construction of two and three dimensional virtual element space which were origi-
nally introduced in [26]. Unlike the finite element space, the virtual element space consists
of both polynomial functions and some implicitly defined non-polynomial functions. To
tackle the non-polynomial functions in the evaluation of bilinear forms, we use suitable
polynomial projection operators on the functions of the virtual element space that ensures
computability using only the known degrees of freedom (DoFs).

5.2.1 Mesh Regularity

Let {Σh}h be a sequence of polytopal meshes consisting of polygonal/polyhedral el-
ements E or P and let hE/hP be the diameter of an element E/P ∈ Σh; h := max

E∈Σh

hE

and for polyhedron, h := max
P∈Σh

hP . In continuation, we define e/F ⊂ ∂E/∂P be an arbi-

trary edge/face and ∂E/∂P be the boundary of E/P . Moreover, we consider the following
regularity conditions on the domain decomposition.

Assumption 5.2.

(T1) E ∈ Σh is star shaped with respect to every point of a ball of radius greater than γ hE .

(T2) for every element E, and for every e ⊂ ∂E satisfies he > hE .

(T3) for polyhedral elements P ⊂ R3, each face F ⊂ ∂P satisfies (T1) and (T2).

where γ > 0 is a positive constant.
The following canonical convention of the multi-dimensional space is followed. Let s =

(s1, s2, . . . , sd) and define |s| = s1 + s2 + · · ·+ sd. We denote a element xs ∈ Rd, d =

2, 3 by, xs := ( xs11 xs22 . . . xsdd ), and xE be the centroid of polygon E. In what follows,
Md

k(E) :=
{(

x−xE

hE

)s
, |s| ≤ k

}
, d = 2, 3 is the set of scaled monomials with Md

−1(E) =

{0}.
Consider the L2 projection operator Π0

k,E : L2(E) → Pk(E) defined such that

(
(Π0

k,E − I)u, v
)
E
= 0 ∀v ∈ Pk(E),

and define the elliptic projection operator Π∇
k,E : H1(E) → Pk(E) satisfying,

(
∇(Π∇

k,E − I)u, ∇v
)
E
= 0 ∀v ∈ Pk(E) and

∫
∂E

(Π∇
k,Eu− u) dr = 0.

131



5.2.1.0.1 Two dimensional virtual element space For every E ∈ Th, consider the
space W p

E (see [26]) defined by,

W k
E =

{
v ∈ H1(E) ∩ C0(∂E) : v|e ∈ Pk(e)∀ edge e ∈ ∂E,∆v ∈ Pk(E)

}
.

Next, we introduce the local virtual element space in two dimensions. Let

Hk(E) :=
{
v ∈ W k

E :

∫
E

(Π∇
k,Ev − v) q = 0 ∀ q ∈ Pk \ Pk−2(E)

}
, (5.2.1)

where Pk \ Pk−2(E) denotes the set of polynomials of degrees exactly equal to k − 1 and
k.

Now we define a set of DOFs associated with an element u ∈ Hk(E) :

• The values of u at the vertices of the element E.

• On each edge e ⊂ ∂E , the moments of u up to order k − 2 i.e.

1

|e|

∫
e

uω de ∀ω ∈ M1
k−2(e).

• The moments up to order k − 2 of u in E i.e.,

1

|E|

∫
E

u ω dE, ∀ω ∈ M2
k−2(E),

We see that the above set of DOFs are unisolvent ( see [27, 30, 92] ).

Then the two dimensional global virtual element space is defined as follows

Hk
h := {v ∈ H1

0 (Ω)
∣∣ v|E ∈ Hk(E) ∀E ∈ Σh}. (5.2.2)

5.2.1.0.2 Three dimension virtual element space The construction of the conforming
virtual element space for d = 3 follows an analogous idea as d = 2. For each polyhedral
element P , we define

B3
k(∂P ) := {v ∈ C0(∂P ) : v|F ∈ Hk(F ) ∀F ⊂ ∂P},
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where Hk(F ) is the conforming two dimensional local virtual element space of degree k
over face F . Following [27, 93], the auxiliary space is defined as

Hk(P ) :=
{
w ∈ H1(P ) :w|∂P ∈ B3

k(∂P ), ∆w ∈ Pk(P );

and (w − Π∇
k,Pw, q)P = 0 ∀q ∈ Pk \ Pk−2(P )

}
,

where the operator Π∇
k,P is elliptic projection operator on polyhedral element P . Further, we

define the DOFs associated with a function u in the virtual space Hk(P ) (see [30, 92, 93]):

• The values of u at the vertices of the element P .

• On each edge e ⊂ ∂P , the moment of the function u up to order k − 2 i.e.

1

|e|

∫
e

uω de ∀ω ∈ M1
k−2(e).

• The moments up to order k − 2 of u on each face F ⊂ ∂P .

1

|F |

∫
F

uω dF, ∀ω ∈ M2
k−2(F).

• The moments up to order k − 2 of u in P i.e.,

1

|P |

∫
P

uω dP, ∀ω ∈ M3
k−2(P).

Finally, the global conforming virtual element space is defined as:

Hk
h := {v ∈ H1

0 (Ω) : v|P ∈ Hk(P ) ∀P ∈ Σh}.

Hereafter, we will not make any difference between E and P .

Remark 5.1. It can be observed that the local virtual element space Hk(E) has the same
number of DoFs as [26] with an added advantage that the L2 projection operator Π0

k,E is
computable on Hk(E) [27]. The L2 projection operator is used to discretize the nonlocal
term and the non-stationary part of the model problem that will be discussed in the later
sections.

Next, we introduce the discrete bilinear form ah(·, ·) and mh(·, ·) corresponding to the
continuous form a(·, ·) and m(·, ·) respectively. Since, the virtual space contains polyno-
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mial and non-polynomial functions that are not available in a closed form, we employ the
projection operators, Π0

k,E and Π∇
k,E to discretize the bilinear form.

First let us consider the symmetric bilinear forms SE
a (·, ·) and SE

m(·, ·) that are positive
semi-definite and definite, respectively, on Hk

h ×Hk
h and are such that, there exist positive

constants α1, α2, β1, β2 such that

α1 a
E(v, v) ≤ SE

a (v, v) ≤ α2 a
E(v, v) ∀v ∈ Hk(E) ∩ Ker(Π∇

k,E)

β1 (w,w)E ≤ SE
m(w,w) ≤ β2 (w,w)E ∀w ∈ Hk(E) ∩ Ker(Π0

k,E).

It can be observed that SE
a (·, ·) or SE

m(·, ·) reduce to zero when one of the entries is a
polynomial. Then the local bilinear form aEh (·, ·) : Hk(E) × Hk(E) → R and mh(·, ·) :

Hk(E)×Hk(E) → R are defined as follows:

aEh (w, v) := aE(Π∇
k,Ew,Π

∇
k,Ev) + SE

a ((I − Π∇
k,E)w, (I − Π∇

k,E)v) ∀w, v ∈ Hk(E),

mE
h (w, v) := (Π0

k,Ew,Π
0
k,Ev)E + SE

m((I − Π0
k,E)w, (I − Π0

k,E)v) ∀w, v ∈ Hk(E).

(5.2.3)

Amongst the different computable forms of the projection operators available in the litera-
ture [28], we choose the following representation:

SE
m(ϕ, ψ) := hdE

Ndof
E∑

z=1

dofz(ϕ) dofz(ψ), and SE
a (ϕ, ψ) := hd−2

E

Ndof
E∑

z=1

dofz(ϕ) dofz(ψ),

where d is the dimension of the space, and N dof
E denotes dimension of the local space

Hk(E). The local forms aEh (·, ·) and mE
h (·, ·) satisfy the following two properties :

Polynomial consistency: For an element E ∈ Σh, 0 < h ≤ 1, the bilinear forms
aEh (·, ·) and mE

h (·, ·) defined in (5.2.3), satisfy the following consistency properties:

aEh (p, v) = aE(p, v) ∀p ∈ Pk(E), ∀v ∈ Hk(E)

mE
h (p, v) = (p, v)E ∀p ∈ Pk(E), ∀v ∈ Hk(E).

(5.2.4)

Stability: There exist four mesh independent positive constants, α∗, α∗, β
∗, β∗ independent

of the element E such that for all v ∈ Hk(E), aEh (v, v), and mE
h (v, v) are bounded by

aE(v, v) and (v, v)E , respectively, i.e.,

α∗ a
E(v, v) ≤ aEh (v, v) ≤ α∗ aE(v, v);

β∗(v, v)E ≤ mE
h (v, v) ≤ β∗(v, v)E

(5.2.5)
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hold. Condition (5.2.5) ensures that the non-polynomial parts SE
a (·, ·) and SE

m(·, ·) scale
same as polynomial parts of aEh (·, ·) and mE

h (·, ·), respectively.

Adding the local contributions, the global form ah(·, ·) : Hk
h ×Hk

h → R and mh(·, ·) :
Hk

h ×Hk
h → R are defined as

ah(w, v) :=
∑
E∈Σh

aEh (w, v) and mh(w, v) :=
∑
E∈Σh

mE
h (w, v) ∀w, v ∈ Hk

h.

Remark 5.2. To discretize the bilinear form aE(·, ·), we have employed Π∇
k,E operator.

However, the term aE(·, ·) can be discretized by employing the external projection operator
Π0

k−1,E [28].

Remark 5.3. In this work, we use the projection operators’ matrix representation to evaluate
the matrices corresponding to the bilinear forms ah(·, ·) and mh(·, ·) respectively. This
matrix representation depends on the order of the space and shape of the element E, but
is independent of the size of the element. Therefore, the matrices remains unchanged for
any transformations that preserves the shape of E. However, this inspection is not true for
higher order virtual element space. [29, Remark 3.5]. We compute the matrices following
the procedure highlighted in [29].

5.2.2 Semi-discrete formulation

Using the discrete bilinear form, the semi discrete formulation of (5.1.8)-(5.1.11) is
defined as: find (uh(t), vh(t)) ∈ Hk

h ×Hk
h for all most all t ∈ [0, T ] such that

mh(Dtuh, φh) +A1(g1(Π
0
kuh), g2(Π

0
kvh)) ah(uh, φh) = ⟨f1h(uh, vh), φh⟩ ∀φh ∈ Hk

h,

(5.2.6)

mh(Dtvh, ψh) +A2(g1(Π
0
kuh), g2(Π

0
kvh)) ah(vh, ψh) = ⟨f2h(uh, vh), ψh⟩ ∀ψh ∈ Hk

h,

(5.2.7)

where

⟨f1h(uh, vh), φh⟩ =
∑
E∈Σh

∫
E

f1(Π
0
k,Euh, Π

0
k,Evh)Π

0
k,Eφh dE,

and ⟨f2h(uh, vh), ψh⟩ =
∑
E∈Σh

∫
E

f2(Π
0
k,Euh, Π

0
k,Evh)Π

0
k,Eψh dE.

(5.2.8)
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The scheme (5.2.6)-(5.2.7) constitute a system of differential equations. Since the model
problem satisfies assumptions 5.1, we deduce that the nonlinear system of equations (5.2.6)-
(5.2.7) has a unique solution for t ∈ [0, T1], where T1 < T . Such a solution can be extended
to [0, T ] following the boundedness property of the discrete solutions. Let C be a generic
positive constant that is independent of mesh diameter h and E, which takes different val-
ues at different instances.

Theorem 5.2. Let the discrete solutions (u0h, v
0
h) ∈ H1

0 (Ω) × H1
0 (Ω) and the two force

functions f1(u, v), f2(u, v) ∈ L2(0, T, L2(Ω)), then, the solution of (5.2.6)-(5.2.7) (uh, vh)
satisfies the following boundedness property

∥vh∥L∞(0,T ;L2(Ω)) ≤ C, ∥uh∥L∞(0,T ;L2(Ω)) ≤ C,

∥Dtvh∥L2(0,T ;L2(Ω)) ≤ C ∥Dtuh∥L2(0,T ;L2(Ω)) ≤ C.

Proof. We consider the semi-discrete formulation (5.2.6)-(5.2.7). Upon choosing φh = uh

in (5.2.6), we obtain

1

2

d

dt
mh(uh, uh) +A1(g1(Π

0
kuh), g2(Π

0
kvh)) ah(uh, uh) = ⟨f1h(uh, vh), uh⟩ (5.2.9)

Using assumption 5.1, triangle inequality and continuity of operator Π0
k, we can get

∥f1(Π0
kuh,Π

0
kvh)∥0 = ∥f1(Π0

kuh,Π
0
kvh)− f1(0, 0) + f1(0, 0)∥0

≤ LF ( ∥uh∥0 + ∥vh∥0 ) + ∥f1(0, 0)∥0. (5.2.10)

An application of Cauchy-Schwarz inequality, boundedness of operator Π0
k, Young’s in-

equality and (5.2.10), we obtain

| ⟨f1h(uh, vh), uh⟩ | ≤
1

2
(∥f1(Π0

kuh,Π
0
kvh)∥20 + ∥uh∥20) ≤ C

(
∥uh∥20 + ∥vh∥20 + ∥f1(0, 0)∥20

)
. (5.2.11)

Substituting the estimation (5.2.11) into (5.2.9), we have

1

2
β∗

d

dt
∥uh∥20 +m0 α∗∥∇uh∥20 ≤ C

(
∥uh∥20 + ∥vh∥20 + ∥f1(0, 0)∥20

)
. (5.2.12)

In the analogous way, we obtain

1

2
β∗
d

dt
∥vh∥20 +m0 α∗∥∇vh∥20 ≤ C

(
∥uh∥20 + ∥vh∥20 + ∥f2(0, 0)∥2

)
. (5.2.13)
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Adding (5.2.12) and (5.2.13), we have

1

2
β∗

d

dt
(∥uh∥20 + ∥vh∥20) +m0 α∗(∥∇uh∥20 + ∥∇vh∥20)

≤ C
(
∥uh∥20 + ∥vh∥20 + ∥f1(0, 0)∥20 + ∥f2(0, 0)∥20

)
.

(5.2.14)

Integrating both sides of (5.2.14), and on application of Grownwall’s inequality, we obtain:

(∥uh(t)∥2 + ∥vh(t)∥2) + C(m0, β∗, α∗)

∫ t

0

(
∥∇uh∥2 + ∥∇vh∥2

)
dr

≤ C
(
∥u0h∥20 + ∥v0h∥20 + ∥f1(0, 0)∥20 + ∥f2(0, 0)∥20

)
.

(5.2.15)

for all t ∈ [0, T ] which implies that ∥uh∥L∞(0,T :L2(Ω)) and ∥vh∥L∞(0,T :L2(Ω)) are bounded.

In order to bound the term ∥Dtu∥L2(0,T ;L2(Ω)) < ∞ and ∥Dtv∥L2(0,T ;L2(Ω)) < ∞, we
choose φh = Dtuh in (5.2.6) and ψh = Dtvh in (5.2.7), and proceed as above similar to the
line of proof of ∥uh∥L2(0,T :L2(Ω)) <∞ and ∥vh∥L2(0,T :L2(Ω)) <∞.

5.2.3 Fully Discrete Scheme

We employ the virtual element method and backward Euler method for discretizing the
space variable and the time variable, respectively. To this end we consider a partition of
non-overlapping sub interval [tn−1, tn] of [0, T ] , where n = 0, 1, 2, · · · , NT with time-step
∆tn := tn − tn−1 such that T =

∑NT

n=0∆t
n. To reduce the computational complexity let

∆tn = ∆t for all n, i.e equal time steps. Let {(Un, V n)}n∈N be a sequence of approxima-
tions of (u, v) at time t = tn. Then the fully discrete scheme of (5.1.8)-(5.1.11) is defined
as:
for each n = 1, 2, 3....., NT , find (Un, V n) ∈ Hk

h ×Hk
h such that

mh

(
Un − Un−1

∆t
, φh

)
+A1(g1(Π

0
kU

n), g2(Π
0
kV

n)) ah(U
n, φh) = ⟨f1h(Un, V n), φh⟩ ,

(5.2.16)

mh

(
V n − V n−1

∆t
, ψh

)
+A2(g1(Π

0
kU

n), g2(Π
0
kV

n)) ah(V
n, ψh) = ⟨f2h(Un, V n), ψh⟩ .

(5.2.17)

U0 = Ih(u(t0)) V 0 = Ih(v(t0)), (5.2.18)
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where U0 and V 0 are initial approximation of u and v at time t = 0 respectively. The
discrete scheme (5.2.16)-(5.2.17) reduces to a system of nonlinear equations which can be
solved by employing iterative methods. To reduce the computation cost, we incorporate
the technique introduced in [90]. A detailed implementation procedure will be discussed
in subsection 5.2.5.

In addition to this, we would like to introduce a linearized scheme for the weak formu-
lation (5.1.8)-(5.1.11). Here, when the unknowns are computed at time tn, the nonlocal
diffusive coefficients and the load terms are computed at the previous time-step tn−1. We
present the linearized scheme as follows:
for each n = 1, 2, 3....., NT , find (Ũn, Ṽ n) ∈ Hk

h ×Hk
h such that

mh

(
Ũn − Ũn−1

∆t
, φh

)
+A1(g1(Π

0
kŨ

n−1), g2(Π
0
kṼ

n−1)) ah(Ũ
n, φh)

=
〈
f1h(Ũ

n−1, Ṽ n−1), φh

〉
∀φh ∈ Hk

h, (5.2.19)

mh

(
Ṽ n − Ṽ n−1

∆t
, ψh

)
+A2(g1(Π

0
kŨ

n−1), g2(Π
0
kṼ

n−1)) ah(Ṽ
n, ψh)

=
〈
f2h(Ũ

n−1, Ṽ n−1), ψh

〉
∀ψh ∈ Hk

h (5.2.20)

U0 = Ih(u(t0)) V 0 = Ih(v(t0)). (5.2.21)

The discrete formulation (5.2.19)-(5.2.20) reduces to system of linear equations that can be
solved by a linear solver directly. Let A and B be the matrix representation of the bilinear
forms ah(·, ·) and mh(·, ·), which are positive semi-definite and positive definite, respec-
tively. Further, let δu := A1(g1(Π

0
kŨ

n−1), g2(Π
0
kṼ

n−1)) and δv := A2(g1(Π
0
kŨ

n−1), g2(Π
0
kṼ

n−1)).
Then, both the matrices B + ∆tδuA and B + ∆tδvA are invertible that ensures unique
solutions to the system (5.2.19)-(5.2.21). Further, in Section 5.5, we will show that the ap-
proximation (Ũn, Ṽ n) converges to the analytical solution with an optimal order in both the
space and time variables. The rate of convergence depends on the initial approximation of
the solution, i.e. (U0, V 0). Therefore, the initial guess could be chosen as an interpolation
of the analytical solution at t = 0.

5.2.4 Existence and uniqueness of the solution for the fully discrete
scheme

Here, we shall use the following variant of Brouwer’s fixed point theorem to ensure the
existence of a solution for the discrete problem (5.2.16) - (5.2.18) and its uniqueness will
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be proved by the method of contradiction.

Theorem 5.3. (Brouwer’s Theorem) Let K be a finite dimensional Hilbert space with inner

product (·, ·)K. Let g : K → K be a continuous function. If there exists a constant, R > 0

such that (g(z), z)K> 0 for all z with ∥z∥K= R, then, there exists a z∗ ∈ K, such that

∥z∗∥K< R and g(z∗) = 0.

Remark 5.4. Let us define an inner product [(X1, Y1), (X2, Y2)] := (∇X1,∇X2)+(∇Y1,∇Y2).
Then it is well-known that Hk

h × Hk
h is a finite dimensional Hilbert space with respect to

[·, ·] and the induced norm ∥|(X, Y )∥| := [(X, Y ), (X, Y )]
1
2 .

Theorem 5.4. Let 0 ≤ n ≤ NT and assume (UJ , V J) ∈ Hk
h ×Hk

h to be the given unique

solution of the system (5.2.16) - (5.2.18) for 0 ≤ J ≤ n− 1. Then for sufficiently small ∆t,

the system (5.2.16)-(5.2.18) has a unique solution (Un, V n) ∈ Hk
h ×Hk

h at time tn.

Proof. We shall prove that the discrete system (5.2.16) -(5.2.18) has a solution (Un, V n)

and that the solution is unique at t = th. For this reason we define a map

L : Hk
h ×Hk

h → Hk
h ×Hk

h such that L(W1,W2) := (L1(W1,W2),L2(W1,W2) ),

where Li(W1,W2) ∈ Hk
h for i=1,2 and satisfies,

(∇L1(W1,W2),∇φ ) := mh(W1, φh) + ∆tA1(g1(Π
0
kW1), g2(Π

0
kW2)) ah(W1, φh)

− (∆t)⟨f1h(W1,W2), φh⟩ −mh(U
n−1, φh) ∀φ ∈ Hk

h.

(5.2.22)

and

(∇L2(W1,W2),∇ψ ) := mh(W2, ψh) + ∆tA2(g1(Π
0
kW1), g2(Π

0
kW2)) ah(W2, ψh)

− (∆t)⟨f2h(W1,W2), ψh⟩ −mh(V
n−1, ψh) ∀ψh ∈ Hk

h.

(5.2.23)

For each (X, Y ) ∈ Hk
h ×Hk

h, let us define TX,Y : Hk
h → R by

TX,Y (φh) := mh(X,φh) + ∆tA1(g1(Π
0
kX), g2(Π

0
kY )) ah(X,φh)

− (∆t) ⟨f1h(X, Y ), φh⟩ −mh(U
n−1, φh).

Note that for each (X, Y ) ∈ Hk
h×Hk

h, the corresponding TX,Y is a bounded linear func-
tional on Hk

h ( follows, since the bilinear form mh(·, ·), ah(·, ·) are bounded, and the nonlo-
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cal term A1(·, ·), the force functions f1h is Lipschitz continuous ). Now, using Riesz repre-
sentation theorem, there exists a uniqueQX,Y ∈ Hk

h such that TX,Y (φh) = (∇QX,Y ,∇φh).
The correspondence (X, Y ) → QX,Y , gives the well-defined mapping L1 : Hk

h×Hk
h → Hk

h

satisfying (5.2.22). Analogously we can obtain the mapping L2 is also well-defined.

First we prove function L is continuous on Hk
h × Hk

h. Consider a vector (X1, Y1) ∈
Hk

h × Hk
h. For some (X2, Y2) ∈ Hk

h × Hk
h, denote L := L(X1, Y1) − L(X2, Y2)( :=

(Θ,Υ) say ). Then using (5.2.22) and (5.2.23), we have,

∥|L∥|2 = [L(X1, Y1)− L(X2, Y2),L] = [L(X1, Y1),L]− [L(X2, Y2),L]

=
(
∇L1(X1, Y1)−∇L1(X2, Y2), ∇Θ

)
+
(
∇L2(X1, Y1)−∇L2(X2, Y2), ∇Υ

)
= mh(X1 −X2,Θ) +∆tA1(g1(Π

0
kX1), g2(Π

0
kY1)) ah(X1,Θ)

−∆tA1(g1(Π
0
kX2), g2(Π

0
kY2)) ah(X2,Θ) + (∆t)⟨f1h(X2, Y2)− f1h(X1, Y1),Θ⟩

+mh(Y1 − Y2,Υ) +∆tA2(g1(Π
0
kX1), g2(Π

0
kY1)) ah(Y1,Υ)

−∆tA2(g1(Π
0
kX2), g2(Π

0
kY2)) ah(Y2,Υ) + (∆t)⟨f2h(X2, Y2)− f2h(X1, Y1),Υ⟩

(5.2.24)

Using (5.2.5), Cauchy-Schwarz inequality, Hölder’s inequality, Young’s inequality and
Poincaré inequality ( with constant CP ), we get

I := mh(X1 −X2,Θ) +mh(Y1 − Y2,Υ)

≤
∑

E∈
∑

h

β∗(∥X1 −X2∥0 ∥Θ∥0 + ∥Y1 − Y2∥0 ∥Υ∥0)

≤ β∗ ∑
E∈

∑
h

(∥X1 −X2∥0 + ∥Y1 − Y2∥0) (∥Θ∥0 + ∥Υ∥0)

≤ β∗
( ∑

E∈
∑

h

(∥X1 −X2∥0 + ∥Y1 − Y2∥0)2
) 1

2
( ∑

E∈
∑

h

(∥Θ∥0 + ∥Υ∥0)2
) 1

2

≤ 2β∗
( ∑

E∈
∑

h

(∥X1 −X2∥20 + ∥Y1 − Y2∥20)
) 1

2
( ∑

E∈
∑

h

(∥Θ∥20 + ∥Υ∥20)
) 1

2

≤ 2β∗C2
P

( ∑
E∈

∑
h

(∥∇(X1 −X2)∥20 + ∥∇(Y1 − Y2)∥20)
) 1

2
( ∑

E∈
∑

h

(∥∇Θ∥20 + ∥∇Υ∥20)
) 1

2

≤ 2β∗C2
P ∥|(X1 −X2, Y1 − Y2)∥| ∥|L∥|. (5.2.25)

Let II := ∆tA1(g1(Π
0
kX1), g2(Π

0
kY1)) ah(X1,Θ)−∆tA1(g1(Π

0
kX2), g2(Π

0
kY2)) ah(X2,Θ).
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Adding and subtracting ∆tA1(g1(Π
0
kX2), g2(Π

0
kY2))ah(X1,Θ) to II , we get

II = ∆t
(
A1(g1(Π

0
kX1), g2(Π

0
kY1))−A1(g1(Π

0
kX2), g2(Π

0
kY2))

)
ah(X1,Θ)

+∆tA1(g1(Π
0
kX2), g2(Π

0
kY2)) ah(X1 −X2,Θ).

Using Assumption 5.1, (5.2.5) and Poincaré inequality, we get

II ≤ ∆t
(
LACP (∥∇(X1 −X2)∥0 + ∥∇(Y1 − Y2)∥0)α∗ ∥∇X1∥0 ∥∇Θ∥0

+M α∗ ∥∇(X1 −X2)∥0 ∥∇Θ∥0
)

≤ C(X1, Y1) (∥∇(X1 −X2)∥0 + ∥∇(Y1 − Y2)∥0) (∥∇Θ∥0 + ∥∇Υ∥0), (5.2.26)

where C(X1, Y1) := ∆t (LACP α
∗ ∥|(X1, Y1)∥|+M α∗). Similarly,

III = ∆tA2(g1(Π
0
kX1), g2(Π

0
kY1)) ah(Y1,Υ)−∆tA2(g1(Π

0
kX2), g2(Π

0
kY2)) ah(Y2,Υ)

≤ C(X1, Y1) (∥∇(X1 −X2)∥0 + ∥∇(Y1 − Y2)∥0) (∥∇Θ∥0 + ∥∇Υ∥0). (5.2.27)

Adding (5.2.26) and (5.2.27) we obtain

II + III ≤ 2 C(X1, Y1) (∥∇(X1 −X2)∥0 + ∥∇(Y1 − Y2)∥0) (∥∇Θ∥0 + ∥∇Υ∥0)

≤ 4 C(X1, Y1) ∥|(X1 −X2, Y1 − Y2)∥| ∥|L∥|. (5.2.28)

Using assumption 5.1 and Poincaré inequality, we have

(∆t)⟨f1h(X2, Y2)− f1h(X1, Y1),Θ⟩+ (∆t)⟨f2h(X2, Y2)− f2h(X1, Y1),Υ⟩

≤ LF C
2
P (∥∇(X1 −X2)∥0 + ∥∇(Y1 − Y2)∥0) (∥∇Θ∥0 + ∥∇Υ∥0)

≤ LF C
2
P 2 ∥|(X1 −X2, Y1 − Y2)∥| ∥|L∥|. (5.2.29)

Substituting (5.2.25), (5.2.28) and (5.2.29) into (5.2.24), we obtain

∥|L(X1, Y1)− L(X2, Y2)∥| ≤
(
2β∗C2

P + 4C(X1, Y1) + 2LF C
2
P

)
∥|(X1 −X2, Y1 − Y2)∥|. (5.2.30)

Hence, given (X1, Y1) ∈ Hk
h×Hk

h and ϵ > 0, choose δ =
ϵ

2β∗C2
P + 4C(X1, Y1) + 2LF C2

P

.

Then for (X2, Y2) ∈ Hk
h × Hk

h whenever ∥|(X1 − X2, Y1 − Y2)∥| < δ, (5.2.30) implies
∥|L∥| < ϵ. This proves L is continuous.
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Consider any (Z1, Z2) ∈ Hk
h ×Hk

h with

∥|(Z1, Z2)∥| =
3 + 4C β∗ ∥|(Un−1, V n−1)∥|

C ( β∗ +∆tm0α∗ )
=: R. (5.2.31)

Next, we derive that [L(Z1, Z2), (Z1, Z2)] > 0. Note that

[L(Z1, Z2), (Z1, Z2)] := (∇L1(Z1, Z2),∇Z1 ) + (∇L2(Z1, Z2),∇Z2 ).

Using (5.2.22), we obtain:

(∇L1(Z1, Z2),∇Z1 ) := mh(Z1, Z1) + ∆tA1(g1(Π
0
kZ1), g2(Π

0
kZ2)) ah(Z1, Z1)

−∆t ⟨f1h(Z1, Z2), Z1⟩ −mh(U
n−1, Z1)

≥ β∗∥Z1∥20 +∆tm0 α∗ ∥∇Z1∥20 − C(LF )∆t
(
∥Z1∥0 + ∥Z2∥0

+|f1(0, 0)|
)
∥Z1∥0 − β∗ ∥Un−1∥0 ∥Z1∥0. (5.2.32)

Similarly, from (5.2.23) we derive

(∇L2(Z1, Z2),∇Z2 ) := mh(Z2, Z2) + ∆tA2(g1(Π
k
0Z1), g2(Π

k
0Z2)) ah(Z2, Z2)

−∆t ⟨f2h(Z1, Z2), Z2⟩ −mh(V
n−1, Z2)

≥ β∗∥Z2∥20 +∆tm0 α∗ ∥∇Z2∥20 −∆tC(LF )
(
∥Z1∥0 + ∥Z2∥0

+|f2(0, 0)|
)
∥Z2∥0 − β∗ ∥V n−1∥0 ∥Z2∥0. (5.2.33)

Adding (5.2.32) and (5.2.33), and using equivalance of norms ∥ · ∥0, ∥∇ · ∥0 on Hk
h, we

have

[L(Z1, Z2), (Z1, Z2)] ≥ C ( β∗ +∆tm0α∗ ) (∥∇Z1∥20 + ∥∇Z2∥20)

−∆tC(LF )
(
2
√
2 (∥∇Z1∥20 + ∥∇Z2∥20)

1
2 + |f1(0, 0)|+ |f2(0, 0)|

)
(∥∇Z1∥20 + ∥∇Z2∥20)

1
2

−2C β∗ (∥∇Un−1∥20 + ∥∇V n−1∥20)
1
2 (∥∇Z1∥20 + ∥∇Z2∥20)

1
2

≥ ∥|(Z1, Z2)∥|
[
C ( β∗ +∆tm0α∗ ) ∥|(Z1, Z2)∥| −∆t

√
2C(LF )

(
2
√
2 ∥|(Z1, Z2)∥|

+|f1(0, 0)|+ |f2(0, 0)|
)

− 2C β∗ ∥|(Un−1, V n−1)∥|
]

≥ R
[
C ( β∗ +∆tm0α∗ )R−∆t

√
2C(LF )

(
2
√
2R + |f1(0, 0)|+ |f2(0, 0)|

)
−2C β∗ ∥|(Un−1, V n−1)∥|

]
. ( use(5.2.31) )
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Choose (∆t) sufficiently small such that

∆t
√
2C(LF )

(
2
√
2R + |f1(0, 0)|+ |f2(0, 0)|

)
< 1.

Therefore,

[L(Z1, Z2), (Z1, Z2)] ≥ R
[
C ( β∗ +∆tm0α∗ )R− 1− 2C β∗ ∥|(Un−1, V n−1)∥|

]
.

Hence, using (5.2.31) we obtain [L(Z1, Z2), (Z1, Z2)] > 0 for all (Z1, Z2) with ∥|(Z1, Z2)∥| =
R and for sufficiently small values of ∆t. Then, by Brouwer’s fixed point theorem, we can
assure the existence of a (Un, V n) ∈ Hk

h×Hk
h with L(Un, V n) := (0, 0). Then substituting

L1(U
n, V n) = 0 in (5.2.22) and L2(U

n, V n) = 0 in (5.2.23) implies that (Un, V n) solves
the system (5.2.16) - (5.2.18) at t = tn.

Now, we will prove the uniqueness. Let (Un
1 , V

n
1 ) and (Un

2 , V
n
2 ) ∈ Hk

h × Hk
h be two

solutions of (5.2.16)-(5.2.17) at the nth time step. Then, from (5.2.16), we have

mh(U
n
1 − Un

2 , φh) + ∆tA1

(
g1(Π

k
0U

n
1 ), g2(Π

k
0V

n
1 )
)
ah(U

n
1 , φh)

−∆tA1

(
g1(Π

k
0U

n
2 ), g2(Π

k
0V

n
2 )
)
ah(U

n
2 , φh) + ∆t⟨f1h(Un

2 , V
n
2 )− f1h(U

n
1 , V

n
1 ), φh⟩ = 0.

(5.2.34)

In an analogous way, we derive

mh(V
n
1 − V n

2 , ψh) + ∆tA2

(
g1(Π

0
kU

n
1 ), g2(Π

0
kV

n
1 )
)
ah(V

n
1 , ψh)

−∆tA2

(
g1(Π

0
kU

n
2 ), g2(Π

0
kV

n
2 )
)
ah(V

n
2 , ψh) + ∆t⟨f2h(Un

2 , V
n
2 )− f2h(U

n
1 , V

n
1 ), ψh⟩ = 0.

(5.2.35)

For better readability, we introduce the following notation: τ := Un
1 − Un

2 and χ :=

V n
1 − V n

2 . Further, we choose the test function φh = τ and inserting in equations (5.2.34),
we have

mh(τ, τ) + ∆t A1

(
g1(Π

0
kU

n
1 ), g2(Π

0
kV

n
1 )
)
ah(U

n
1 , τ)

−∆tA1

(
g1(Π

0
kU

n
2 ), g2(Π

0
kV

n
2 )
)
ah(U

n
2 , τ) + ∆t⟨f1h(Un

2 , V
n
2 )− f1h(U

n
1 , V

n
1 ), τ⟩ = 0.

(5.2.36)

An application of Cauchy-Schwarz inequality, Lipschitz continuity of f1 from assump-
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tion 5.1 and the boundedness of the projection operator Π0
k, yields

| ⟨f1h(Un
2 , V

n
2 )− f1h(U

n
1 , V

n
1 ), τ⟩ | ≤ C LF

(
∥τ∥0 + ∥χ∥0

)
∥τ∥0. (5.2.37)

Adding and subtracting A1

(
g1(Π

k
0U

n
1 ), g2(Π

k
0V

n
1 )
)
ah(U

n
2 , τ), we rewrite the difference of

the nonlocal terms in the following way:

A1

(
g1(Π

0
kU

n
1 ), g2(Π

0
kV

n
1 )
)
ah(U

n
1 , τ)−A1

(
g1(Π

0
kU

n
2 ), g2(Π

0
kV

n
2 )
)
ah(U

n
2 , τ)

= A1

(
g1(Π

0
kU

n
1 ), g2(Π

0
kV

n
1 )
)
ah(U

n
1 − Un

2 , τ)︸ ︷︷ ︸
:=T1

+
(
A1

(
g1(Π

0
kU

n
1 ), g2(Π

0
kV

n
1 )
)
−A1

(
g1(Π

0
kU

n
2 ), g2(Π

0
kV

n
2 )
))

ah(U
n
2 , τ)︸ ︷︷ ︸

:=T2

.

(5.2.38)

Using assumption 5.1 on A1(·, ·), Cauchy-Schwarz inequality and the boundedness of the
operator Π0

k, we obtain

m0 α∗ ∥∇τ∥20 ≤ T1 and |T2| ≤ C LA

(
∥τ∥0 + ∥χ∥0

)
∥∇Un

2 ∥0 ∥∇τ∥0. (5.2.39)

Substituting (5.2.37) and (5.2.39) into (5.2.36), we derive the following result:

mh(τ, τ) + (∆t)m0 α∗ ∥∇τ∥20 − C (∆t)
(
∥τ∥0 + ∥χ∥0

) (
∥τ∥0 + ∥∇τ∥0

)
≤ 0.

(5.2.40)

Using analogous techniques as (5.2.40), we derive from (5.2.35),

mh(χ, χ)+(∆t)m0 α∗ ∥∇χ∥20−C (∆t)
(
∥τ∥0+∥χ∥0

)(
∥χ∥0+∥∇χ∥0

)
≤ 0. (5.2.41)

Note that using the inequality ab ≤ ϵ a2+
b2

ϵ
(with ϵ =

m0 α∗

4
) and the inequality (a+b)2 ≤

2a2 + 2b2, we have(
∥τ∥0 + ∥χ∥0

) (
∥τ∥0 + ∥∇τ∥0

)
≤ 4

m0 α∗

(
∥τ∥0 + ∥χ∥0

)2
+
m0 α∗

4

(
∥τ∥0 + ∥∇τ∥0

)2
≤ 8

m0 α∗

(
∥τ∥20 + ∥χ∥20

)
+
m0 α∗

2

(
∥τ∥20 + ∥∇τ∥20

)
≤ Cu(α∗,m0)

(
∥τ∥20 + ∥χ∥20

)
+
m0 α∗

2
∥∇τ∥20.

(5.2.42)
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Similarly,(
∥τ∥0 + ∥χ∥0

) (
∥χ∥0 + ∥∇χ∥0

)
≤ Cv(α∗,m0)

(
∥τ∥20 + ∥χ∥20

)
+
m0 α∗

2
∥∇χ∥20. (5.2.43)

Upon adding (5.2.40) and (5.2.41), using the stability ofmh(·, ·) as in (5.2.5) and (5.2.42)-
(5.2.43), we yield(

β∗ − Cu(α∗,m0)∆t
)
∥τ∥20 +

(
β∗ − Cv(α∗,m0)∆t

)
∥χ∥20

+
∆t m0 α∗

2
(∥∇τ∥20 + ∥∇χ∥20) ≤ 0.

(5.2.44)

Neglecting the terms ∥∇τ∥20 and ∥∇χ∥20 and choosing ∆t sufficiently small, we derive

∥τ∥0 + ∥χ∥0 ≤ 0. (5.2.45)

which implies τ = 0 and χ = 0.

Remark 5.5. In Theorem 5.4, we have proved the well-posedness of the fully discrete
scheme at time tn based on the assumptions that the fully discrete scheme has unique
solution at each previous time steps, say t = t1, · · · , tn−1.

5.2.5 Implementation of the scheme

The fully discrete formulation (5.2.16)-(5.2.18) can be solved employing Newton’s
method. However, the presence of the nonlocal coefficient reduces the sparse structure
of the Jacobian of the nonlinear system, thereby increasing the computational cost. Since
our model problem contains a coupled system, the computational cost is twice. In or-
der to avoid this difficulty, we incorporate the idea provided in [90]. The fully discrete
scheme (5.2.16)-(5.2.18) can be rewritten as

mh(U
n, φh) + (∆t)A1(g1(Π

0
kU

n), g2(Π
0
kV

n))ah(U
n, φh) = (∆t) ⟨f1h(Un, V n), φh⟩+mh(U

n−1, φh),

mh(V
n, ψh) + (∆t)A2(g1(Π

0
kU

n), g2(Π
0
kV

n))ah(V
n, ψh) = (∆t) ⟨f2h(Un, V n), ψh⟩+mh(V

n−1, ψh).

We introduce two new independent variables and rewrite the equation in the following way,
let d1 = g1(Π

0
kU

n) and d2 = g2(Π
0
kV

n). Then, the above equations reduce to the following
non-linear system,
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mh(U
n, φh) + (∆t)A1(d1, d2) ah(U

n, φh) = (∆t) ⟨f1h(Un, V n), φh⟩+mh(U
n−1, φh),

mh(V
n, ψh) + (∆t)A2(d1, d2) ah(V

n, ψh) = (∆t) ⟨f2h(Un, V n), ψh⟩+mh(V
n−1, ψh),

d1 = g1(Π
0
kU

n)

d2 = g2(Π
0
kV

n). (5.2.46)

The Jacobian of the system (5.2.46) will be of the form

J =


A1 0 C1 D1

0 B2 C2 D2

A3 0 C3 0

0 B4 0 D4


2Ndof+2×2Ndof+2

where, N dof represents the total number of degrees of freedom of the global virtual element
space Hk

h. In what follows, we define the residual of the fully discrete system (5.2.46) as

F1j := mh(U
n, ψj) + (∆t)A1(d1, d2)ah(U

n, ψj)

− (∆t)(f1h(U
n, V n), ψj)−mh(U

n−1, ψj) = 0, 1 ≤ j ≤ N dof,

F2j := mh(V
n, ψj) + (∆t)A2(d1, d2)ah(V

n, ψj)

− (∆t)(f2h(U
n, V n), ψj)−mh(V

n−1, ψj) = 0, 1 ≤ j ≤ N dof,

F1Ndof+1 := g1(Π
0
kU

n)− d1 = 0, and F2Ndof+1 := g2(Π
0
kV

n)− d2 = 0.

(5.2.47)

Let us define,

Un =
Ndof∑
i=1

αn
i ψi, and V n =

Ndof∑
i=1

βn
i ψi,

where B := {ψ1, . . . , ψNdof} forms the canonical basis of the finite dimensional space
Hk(E), and αn

i , and βn
i are unknowns. Further, the entries of the Jacobian matrix are

given by:

(A1)ij =
∂F1j

∂αn
i

= mh(ψi, ψj) + (∆t)A1(d1, d2)ah(ψi, ψj), 1 ≤ i, j ≤ N dof,

(C1)1j =
∂F1j

∂d1
= (∆t)

∂A1(d1, d2)

∂d1
ah(U

n, ψj), 1 ≤ j ≤ N dof,
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(D1)1j =
∂F1j

∂d2
= (∆t)

∂A1(d1, d2)

∂d2
ah(U

n, ψj), 1 ≤ j ≤ N dof,

(B2)ij =
∂F2j

∂βn
i

= mh(ψi, ψj) + (∆t)A2(d1, d2)ah(ψi, ψj), 1 ≤ i, j ≤ N dof,

(C2)1j =
∂F2j

∂d1
= (∆t)

∂A2(d1, d2)

∂d1
ah(V

n, ψj), 1 ≤ j ≤ N dof,

(D2)1j =
∂F2j

∂d2
= (∆t)

∂A2(d1, d2)

∂d2
ah(V

n, ψj), 1 ≤ j ≤ N dof,

(A3)1i =
∂F1Ndof+1

∂αn
i

=
∂g1(Π

0
kU

n)

∂αn
i

, 1 ≤ i ≤ N dof,

(C3)11 =
∂F1Ndof+1

∂d1
= −1,

(B4)1i =
∂F2Ndof+1

∂βn
i

=
∂g2(Π

0
kV

n)

∂βn
i

, 1 ≤ i ≤ N dof,

(D4)11 =
∂F2Ndof+1

∂d2
= −1.

Theorem 5.5. Let assumption 5.1 and assumption 5.2 holds. Also assume that (Un, V n, d1, d2) ∈
Hk

h × Hk
h × R × R be the solution of the system (5.2.46), then (Un, V n) ∈ Hk

h × Hk
h be

the solution of (5.2.16)-(5.2.17). Conversely, let (Un, V n) ∈ Hk
h × Hk

h be the solution of

the system of equations (5.2.16)-(5.2.17), then (Un, V n, d1, d2) ∈ Hk
h×Hk

h×R×R be the

solution of the system (5.2.46).

Proof. Proceed similar to proof of Theorem 4.1 in [91].

5.3 A priori error estimate for semi-discrete scheme

In this section, we establish a priori error estimate for the semi discrete scheme in the
L2 and H1 norms. It is observed that the direct computation of the error ∥u(t)− uh(t)∥0 +
∥v(t)−vh(t)∥0 may not be straightforward to bound. To achieve the goal, we introduce the
Ritz projection operator Rh : H1(Ω) → Hk

h that is defined as

ah(Rhu, ω) = a(u, ω) ∀ω ∈ H1(Ω). (5.3.1)

The Ritz projection operator Rh directly follows from the coercivity and boundedness of
the bilinear form ah(·, ·) and the continuity of the function a(u, ·) on Hk

h. Employing the
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projection operator Rh, we bisect the error u(t)− uh(t) and v(t)− vh(t) into two parts as

u(·, t)− uh(·, t) = u(·, t)−Rhu(t)︸ ︷︷ ︸
=:ρ1

− (−Rhu(t) + uh(·, t))︸ ︷︷ ︸
=:ρ2

, (5.3.2)

v(·, t)− vh(·, t) = v(·, t)−Rhv(t)︸ ︷︷ ︸
=:µ1

− (−Rhv(t) + vh(·, t))︸ ︷︷ ︸
=:µ2

. (5.3.3)

Using the approximation properties of Rh, we bound the term ρ1, µ1. To bound the
other terms ρ2, µ2, we use the semi-discrete formulation (5.2.6)-(5.2.7) and the approxima-
tion properties of the projection operators on the polynomial space that will be discussed in
forthcoming theorems. Next, we introduce the approximation properties of the polynomial
projection operator uπ (refer [94]).

Lemma 5.1. Consider that assumption 5.2 holds on the discretized domain. Then, for all

E ∈ Σh, where 0 < h ≤ 1, and v ∈ Hs(E), where 1 ≤ s ≤ k+1, there exists a polynomial

vπ ∈ Pk(E) such that:

∥v − vπ∥0,E + hE∥∇v −∇vπ∥0,E ≤ C hsE |v|s,E, (5.3.4)

where, the positive generic constant C depends on the mesh regularity parameter γ, order

k of the polynomial space Pk(E), but is independent of the mesh size hE .

Let Ih be a interpolation operator on the virtual element space Hk
h. For each element

E ∈ Σh, and for v ∈ H1(Ω), there exists an element IEh v ∈ Hk(E) such that:

dofi(v) = dofi(IEh v) 1 ≤ i ≤ N dof
E ,

where,N dof
E denotes the total numbers of DoFs in Hk(E). The global interpolation operator

Ih is defined such that it is reduced to IEh when restricted to an element E,i.e. Ih|E = IEh .
The approximation properties of the global interpolation operator is now presented below
(see [30]).

Lemma 5.2. Let assumption 5.2 hold on the discretization of the computational domain Ω.

Further, we assume that v ∈ Hs(Ω). Then, for 1 ≤ s ≤ k+1, the following approximation

property holds

∥v − IEh v∥0,E + h ∥∇v −∇IEh v∥0,E ≤ Chs|v|s,E, (5.3.5)

where the constant C depends on mesh regularity parameter γ but is independent of h.
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Using the interpolation operator Ih, we can prove that the Ritz projection operator ap-
proximates optimally .

Lemma 5.3. Let u ∈ Hk(Ω). Then, there exists an unique functions Rhu ∈ Hk
h such that

∥u−Rhu∥α ≤ Chβ−α|u|β, α = 0, 1 and α ≤ β ≤ k + 1. (5.3.6)

For interested readers, we refer to [95, Lemma 3.1] for a detailed discussion. Now we
prove optimal order convergence results for the semi-discrete virtual element formulation
(5.2.6)-(5.2.7), with respect to L2 norm and H1 semi-norm.

Theorem 5.6. Let (u(t), v(t)) ∈ H1
0 (Ω) × H1

0 (Ω) be the solution of the system (5.1.8)-
(5.1.11) and let (uh(t), vh(t)) ∈ Hk

h × Hk
h be the discrete solution of the problem (5.2.6)-

(5.2.7). Further, assume that ∥u∥L2(0,T ;Hk+1(Ω)) <∞, ∥v∥L2(0,T ;Hk+1(Ω)) <∞,

∥Dtu∥L2(0,T ;Hk+1(Ω)) < ∞, ∥Dtv∥L2(0,T ;Hk+1(Ω)) < ∞, and ∥f(u, v)∥L2(0,T ;Hk+1(Ω)) < ∞.

Then, for almost all t ∈ (0, T ], there exists a positive constantC which depends on the mesh

regularity parameter γ, the order of the virtual element space k, the stability parameter of

the discrete bilinear forms ah(·, ·) and mh(·, ·), but independent of the mesh size h such

that, we have

∥uh(t)− u(t)∥0 + ∥vh(t)− v(t)∥0 ≤ C
(
∥uh(0)− u(0)∥0 + ∥vh(0)− v(0)∥0

)
+ Chk+1

(
|u(0)|k+1 + |v(0)|k+1 + ∥u∥L2(0,T ;Hk+1(Ω)) + ∥v∥L2(0,T ;Hk+1(Ω)) + ∥Dtu∥L2(0,T ;Hk+1(Ω))

+ ∥Dtv∥L2(0,T ;Hk+1(Ω)) + ∥f1(u, v)∥L2(0,T ;Hk+1(Ω)) + ∥f2(u, v)∥L2(0,T ;Hk+1(Ω))

)
,

where the initial guess uh(0) and vh(0) are chosen as uh(0) := Ihu(0) and vh(0) := Ihv(0).

Proof. Using the semi discrete scheme (5.2.6)-(5.2.7) and (5.3.1), we have

mh(ρ2, φh) + ∆t A1

(
g1(Π

0
kuh), g2(Π

0
kvh)

)
ah(ρ2, φh) = ⟨f1h(uh, vh), φh⟩ − ⟨f1(u, v), φh⟩

−mh(DtRhu(t), φh) + (Dtu(t), φh) +
(
A1(g1(u), g2(v))−A1(g1(Π

0
kuh), g2(Π

0
kvh))

)
a(u(t), φh).

(5.3.7)

Using the approximation property of the L2 projection operator Π0
k and the assumption 5.1,

we have [96, Theorem 4.2, (23)]
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|⟨f1h(uh, vh), φh⟩ − ⟨f1(u, v), φh⟩| ≤ C(LF )
(
hk+1 |u|k+1 + hk+1 |v|k+1 + hk+1|f1(u, v)|k+1

+∥u− uh∥0 + ∥v − vh∥0
)
∥φh∥0. (5.3.8)

Moreover, since the nonlocal function A1(·, ·) satisfies assumption 5.1, and using the ap-
proximation properties of the L2 projection operator Π0

k, we derive the estimation

|A1(g1(u), g2(v))−A1(g1(Π
0
kuh), g2(Π

0
kvh))|

≤ C(LA)
(
hk+1 |u|k+1 + hk+1 |v|k+1 + ∥u− uh∥0 + ∥v − vh∥0

)
. (5.3.9)

Using the polynomial consistency property of the bilinear form mh(·, ·) and approximation
properties of the L2 projection operator and the Ritz’s projection operator, we derive [95]

| −mh(DtRhu(t), φh) + (Dtu(t), φh)| ≤ C hk+1 |Dtu|k+1∥φh∥0. (5.3.10)

Substituting φh = ρ2(t) in (5.3.7) and using the estimations (5.3.8) - (5.3.10), and the
stability property of ah(·, ·) and mh(·, ·), we have

1

2

d

dt
β∗∥ρ2(t)∥20 + C m0 α∗∥∇ρ2(t)∥20 ≤ C

(
hk+1|u|k+1 + hk+1|v|k+1 + hk+1|f1(u, v)|k+1

+∥u− uh∥0 + ∥v − vh∥0
)
∥ρ2(t)∥0 + C

(
hk+1 |u|k+1 + hk+1 |v|k+1

+∥u− uh∥0 + ∥v − vh∥0
)
∥∆u(t)∥0 ∥ρ2(t)∥0 + C hk+1 |Dtu|k+1 ∥ρ2(t)∥0. (5.3.11)

Further, we decompose the error u(t)−uh(t) in the rhs of (5.3.11) into ρ1(t) and ρ2(t), and
v(t)− vh(t) into µ1(t) and µ2(t) and using Lemma 5.3, we derive

1

2
β∗

d

dt
∥ρ2(t)∥20 + Cα∗ m0 ∥∇ρ2(t)∥20 ≤ C

(
∥ρ2∥0 + ∥µ2∥0 + hk+1 |u|k+1 + hk+1|v|k+1

+ hk+1 |f1(u, v)|k+1 + hk+1|Dtu|k+1

)
∥ρ2(t)∥0.

Using Young’s inequality and integrating both sides from 0 to t, we have
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∥ρ2(t)∥20 − ∥ρ2(0)∥20 + C(α∗, β∗,m0)

∫ t

0

∥∇ρ2(s)∥20 ≤ C(β∗)
(∫ t

0

(∥ρ2(s)∥20 + ∥µ2(s)∥20)
)

+C(β∗)h
2k+2

(
∥u∥2L1(0,t;Hk+1(Ω)) + ∥v∥2L1(0,t;Hk+1(Ω)) + ∥f1(u, v)∥2L1(0,t;Hk+1(Ω))

+∥Dtu∥2L1(0,t;Hk+1(Ω))

)
. (5.3.12)

Using analogous arguments as (5.3.12), we obtain from (5.2.7)

∥µ2(t)∥20 − ∥µ2(0)∥20 + C(α∗, β∗,m0)

∫ t

0

∥∇µ2(s)∥20 ds ≤ C
( ∫ t

0

(∥ρ2(s)∥20 + ∥µ2(s)∥20
)

+C(β∗)h
2k+2

(
∥u∥2L1(0,t;Hk+1(Ω)) + ∥v∥2L1(0,t;Hk+1(Ω)) + ∥f2(u, v)∥2L1(0,t;Hk+1(Ω))

+∥Dtv∥2L1(0,t;Hk+1(Ω))

)
. (5.3.13)

Upon adding both the equations (5.3.12) and (5.3.13), and neglecting the terms
∫ t

0
(∥∇µ2(s)∥2+

∥∇ρ2(s)∥2) ds we get:

∥µ2(t)∥20 − ∥µ2(0)∥20 + ∥ρ2(t)∥20 − ∥ρ2(0)∥20 ≤ C
( ∫ t

0

(∥ρ2(s)∥20 + ∥µ2(s)∥20
)

+ h2k+2
(
∥u∥2L1(0,t;Hk+1(Ω)) + ∥v∥2L1(0,t;Hk+1(Ω)) + ∥f2(u, v)∥2L1(0,t;Hk+1(Ω))

+ ∥f1(u, v)∥2L1(0,t;Hk+1(Ω)) + ∥Dtv∥2L1(0,t;Hk+1(Ω)) + ∥Dtu∥2L1(0,t;Hk+1(Ω))

)
.

An application of Grownwall’s inequality yields

∥µ2(t)∥20 + ∥ρ2(t)∥20 ≤ ∥µ2(0)∥20 + ∥ρ2(0)∥20 + C h2k+2
(
∥u(t)∥2L1(0,t;Hk+1(Ω)) + ∥v(t)∥2L1(0,t;Hk+1(Ω))

+ ∥f2(u, v)∥2L1(0,t;Hk+1(Ω)) + ∥Dtv∥2L1(0,t;Hk+1(Ω)) + ∥Dtu∥2L1(0,t;Hk+1(Ω))

)
.

Moreover, using the definition (5.3.2)-(5.3.3), the approximation property of the projection
operator Rh in Lemma (5.3), we obtain:

∥u(t)− uh(t)∥0 + ∥v(t)− vh(t)∥0 ≤ C
(
∥u(0)− uh(0)∥0 + ∥v(0)− vh(0)∥0

)
+ C hk+1

(
|u(0)|k+1 + |v(0)|k+1 + ∥u∥L1(0,T ;Hk+1(Ω)) + ∥v∥L1(0,T ;Hk+1(Ω)) + ∥Dtu∥L1(0,T ;Hk+1(Ω))

+ ∥Dtv∥L1(0,T ;Hk+1(Ω)) + ∥f1(u, v)∥L1(0,t;Hk+1(Ω)) + ∥f2(u, v)∥L1(0,t;Hk+1(Ω))

)
.
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Theorem 5.7. Let (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) be the solution of the system (5.1.8) -(5.1.11)
and let (uh(t), vh(t)) ∈ Hk

h × Hk
h be the discrete solution of the problem (5.2.6)-(5.2.7).

Then, under the assumption of Theorem 5.6 and for almost all t ∈ (0, T ], there exists a

positive constant C which depends on the mesh regularity parameter γ, the order of the

virtual element space k, the stability parameter of the discrete bilinear forms ah(·, ·) and

mh(·, ·), but independent of the mesh size h such that, we have,

∥∇uh(t)−∇u(t)∥0 + ∥∇vh(t)−∇v(t)∥0 ≤ C
(
∥∇uh(0)−∇u(0)∥0 + ∥∇vh(0)−∇v(0)∥0

)
+Chk

(
|u(0)|k+1 + |v(0)|k+1 + ∥u∥L2(0,T ;Hk+1(Ω)) + ∥v∥L2(0,T ;Hk+1(Ω)) + ∥Dtu∥L2(0,T ;Hk+1(Ω))

+∥Dtv∥L2(0,T ;Hk+1(Ω)) + ∥f1(u, v)∥L2(0,T ;Hk+1(Ω)) + ∥f2(u, v)∥L2(0,T ;Hk+1(Ω))

)
. (5.3.14)

Proof. Recollecting the estimations (5.3.7) - (5.3.10), then substituting φh = (ρ2(t))t in
(5.3.7) and using the stability property of ah(·, ·) and mh(·, ·), we have

1

2
β∗∥(ρ2(t))t∥20 +

1

2
C m0 α∗

d

dt
∥∇ρ2(t)∥20

≤ C
(
hk+1|u|k+1 + hk+1|v|k+1 + hk+1|f1(u, v)|k+1 + ∥u− uh∥0 + ∥v − vh∥0

)
∥(ρ2(t))t∥0

+C
(
hk+1 |u|k+1 + hk+1 |v|k+1 + ∥u− uh∥0 + ∥v − vh∥0

)
∥∆u(t)∥0 ∥(ρ2(t))t∥0

+C hk+1 |Dtu|k+1 ∥(ρ2(t))t∥0.

Using Young’s inequality appropriately yields

1

4
β∗∥(ρ2(t))t∥20 +

1

2
C m0 α∗

d

dt
∥∇ρ2(t)∥20

≤ C
(
h2(k+1)|u|2k+1 + h2(k+1)|v|2k+1 + h2(k+1)|f1(u, v)|2k+1 + h2(k+1) |Dtu|2k+1

+∥u− uh∥20 + ∥v − vh∥20
)
. (5.3.15)

Analogously, estimating (5.2.7) we obtain

1

4
β∗∥(µ2(t))t∥20 +

1

2
C m0 α∗

d

dt
∥∇µ2(t)∥20 ≤ C

(
h2(k+1)|u|2k+1 + h2(k+1)|v|2k+1

+h2(k+1)|f2(u, v)|2k+1 + h2(k+1) |Dtv|2k+1 + ∥u− uh∥20 + ∥v − vh∥20
)
. (5.3.16)

Adding (5.3.15) and (5.3.16), and neglecting the positive term 1
4
β∗ (∥(ρ2(t))t∥20+(µ2(t))t∥20)
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and using Theorem 5.6 (for estimating ∥u− uh∥20 + ∥v − vh∥20 ), we obtain,

d

dt
∥∇ρ2(t)∥20 +

d

dt
∥∇µ2(t)∥20 ≤ C

(
∥uh(0)− u(0)∥20 + ∥vh(0)− v(0)∥20

)
+Ch2(k+1)

(
|u(0)|2k+1 + |v(0)|2k+1 + ∥u∥2L2(0,T ;Hk+1(Ω)) + ∥v∥2L2(0,T ;Hk+1(Ω)) + ∥Dtu∥2L2(0,T ;Hk+1(Ω))

+∥Dtv∥2L2(0,T ;Hk+1(Ω)) + ∥f1(u, v)∥2L2(0,T ;Hk+1(Ω)) + ∥f2(u, v)∥2L2(0,T ;Hk+1(Ω))

)
.

Integrating above equation on both sides from 0 to t, we get

∥∇ρ2(t)∥20 + ∥∇µ2(t)∥20 ≤ C
(
∥∇ρ2(0)∥20 + ∥∇µ2(0)∥20 + ∥uh(0)− u(0)∥20 + ∥vh(0)− v(0)∥20

)
+Ch2(k+1)

(
|u(0)|2k+1 + |v(0)|2k+1 + ∥u∥2L2(0,T ;Hk+1(Ω)) + ∥v∥2L2(0,T ;Hk+1(Ω)) + ∥Dtu∥2L2(0,T ;Hk+1(Ω))

+∥Dtv∥2L2(0,T ;Hk+1(Ω)) + ∥f1(u, v)∥2L2(0,T ;Hk+1(Ω)) + ∥f2(u, v)∥2L2(0,T ;Hk+1(Ω))

)
. (5.3.17)

Using the definition (5.3.2)-(5.3.3), Lemma (5.3) and (5.3.17) we obtain the desired esti-
mate (5.3.14).

5.4 Error estimation for fully discrete scheme

In this section, we prove apriori error estimates showing optimal order convergence of
solutions of the fully discrete scheme (5.2.16)-(5.2.17), with respect to L2 norm and H1

semi-norm, at each time step.

Theorem 5.8. Let (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) be the solution of Equations (5.1.8)-(5.1.9) and

let (Un, V n) ∈ Hk
h ×Hk

h be the solution of Equations (5.2.16)-(5.2.18) at time tn ∈ [0, T ].

Further, consider the initial guess for the independent variables u, v as U0 = Ih(u(0)) and

V 0 = Ih(v(0)). Then, there exists a positive constant C that is independent of the mesh

diameter h and the time increment ∆t, such that the following estimation holds

∥Un − u(tn)∥0 + ∥V n − v(tn)∥0 ≤ C
(
∥U0 − u(t0)∥0 + ∥V 0 − v(t0)∥0

)
+ C hk+1

(
|u(0)|k+1

+ |v(0)|k+1 + ∥u∥L∞(0,tn,Hk+1(Ω)) + ∥v∥L∞(0,tn,Hk+1(Ω)) + ∥Dtu∥L1(0,tn,Hk+1(Ω))

+ ∥Dtv∥L1(0,tn,Hk+1(Ω)) + ∥f1(u, v)∥L∞(0,tn,Hk+1(Ω)) + ∥f2(u, v)∥L∞(0,tn,Hk+1(Ω))

)
+ C ∆t

(
∥Dttu∥L1(0,tn,L2(Ω)) + ∥Dttv∥L1(0,tn,L2(Ω))

)
.

Proof. To prove the fully discrete estimation, we employ (5.2.16), the definition of the Ritz
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projection operator, and the continuous weak formulation (5.1.8) and deduce that

mh

(ρn2 − ρn−1
2

∆t
, φh

)
+A1

(
g1(Π

0
kU

n), g2(Π
0
kV

n)
)
ah(ρ

n
2 , φh) = ⟨f1h(Un, V n), φh⟩

−⟨f1(u(tn), v(tn), φh⟩ −mh

(Rhu(tn)−Rhu(tn−1)

∆t
, φh

)
+ (Dtu(tn), φh)

+
(
A1

(
g1(u(tn)), g2(v(tn))

)
−A1

(
g1(Π

0
kU

n), g2(Π
0
kV

n)
))

a(u(tn), φh). (5.4.1)

An application of the approximation property of the projection operator Π0
k and using as-

sumption 5.1, the error generated by the force function approximation is bounded as :

|⟨f1h(Un, V n), φh⟩ − ⟨f1(u(tn), v(tn)), φh⟩| ≤ Chk+1
(
|u(tn)|k+1 + |v(tn)|k+1

+ |f1(u(tn), v(tn))|k+1

)
∥φh∥0 +

(
∥ρn2∥0 + ∥µn

2∥0
)
∥φh∥0.

(5.4.2)

Further, using the same arguments as ([95], Theorem 3.3), we have∣∣∣mh

(Rhu(tn)−Rhu(tn−1)

∆t
, φh

)
− (Dtu(tn), φh)

∣∣∣
≤ C (1/∆t)

(
∥∆tDtu(tn)− u(tn)− u(tn−1)∥0︸ ︷︷ ︸

=:ηn1

+hk+1 |u(tn)− u(tn−1)|k+1︸ ︷︷ ︸
=:ηn2

)
∥φh∥0. (5.4.3)

Using Assumption 5.1 and Green’s theorem, we obtain∣∣∣(A1

(
g1(u(tn)), g2(v(tn))

)
−A1

(
g1(Π

0
kU

n), g2(Π
0
kV

n)
))∣∣∣ |a(u(tn), φh)|

≤ C
(
hk+1|u(tn)|k+1 + hk+1|v(tn)|k+1 + ∥ρn2∥0 + ∥µn

2∥0
)
∥∆u(tn)∥0 ∥φh∥0.

(5.4.4)

Upon choosing φh = ρn2 in the Equation (5.4.1) and using (5.4.2)-(5.4.4), we have

mh(ρ
n
2 , ρ

n
2 ) + (∆t) C(m0, α∗, β∗) ∥∇ρn2∥20 ≤ C(β∗)

(
ηn1 + ηn2

)
∥ρn2∥0

+ C(β∗) ∆t h
k+1

(
|u(tn)|k+1 + |v(tn)|k+1 + |f1(u(tn), v(tn))|k+1

)
∥ρn2∥0

+ C(∥∆u(tn)∥0, β∗) ∆t
(
∥ρn2∥0 + ∥µn

2∥0
)
∥ρn2∥0 +mh(ρ

n−1
2 , ρn2 ).

Proceeding same as ([95], Theorem 3.3), we obtain
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∥ρn2∥0 ≤ C∥ρn−1
2 ∥0 + C∆t

(
∥ρn2∥0 + ∥µn

2∥0
)
+ C∆t hk+1

(
|u(tn)|k+1 + |v(tn)|k+1

+|f1(u(tn), v(tn))|k+1

)
+ C

(
ηn1 + ηn2

)
, (5.4.5)

Similarly, from (5.2.17), we get

∥µn
2∥0 ≤ C∥µn−1

2 ∥0 + C∆t
(
∥ρn2∥0 + ∥µn

2∥0
)
+ C∆t hk+1

(
|u(tn)|k+1 + |v(tn)|k+1

+|f2(u(tn), v(tn))|k+1

)
+ C

(
ξn1 + ξn2

)
, (5.4.6)

where ξn1 := ∥∆tDtv(tn) − v(tn) + v(tn−1)∥0 and ξn2 := hk+1 |v(tn) − v(tn−1)|k+1.
Applying the analogous arguments as [95, page 2124], we derive

n∑
ν=1

ην1 ≤ ∆t ∥Dttu∥L1(0,tn;L2(Ω)) and
n∑

ν=1

ην2 ≤ hk+1 ∥Dtu∥L1(0,tn;Hk+1(Ω)). (5.4.7)

n∑
ν=1

ξν1 ≤ ∆t ∥Dttv∥L1(0,tn;L2(Ω)) and
n∑

ν=1

ξν2 ≤ hk+1 ∥Dtv∥L1(0,tn;Hk+1(Ω)). (5.4.8)

Adding the estimates (5.4.5) and (5.4.6) and proceeding as in [96, Theorem 4.4], we get

∥ρn2∥0 + ∥µn
2∥0 ≤ C (1 + C ∆t)n

(
∥ρ02∥0 + ∥µ0

2∥0
)
+ C

(
∆t hk+1

n∑
ν=1

(1 + C ∆t)n−ν

(|f1(u(tν), v(tν))|k+1 + |f2(u(tν), v(tν))|k+1 + |u(tν)|k+1 + |v(tν)|k+1)
)

+
n∑

ν=1

(1 + C ∆t)n−ν (ην1 + ην2 + ξν1 + ξν2 ). (5.4.9)

Using Taylor’s series expansion of (1 + C∆t)n−ν and noting n∆t ≤ NT∆t ≤ T , along
with the estimations (5.4.7), and (5.4.8), we derive

∥ρn2∥0 + ∥µn
2∥0 ≤ C(∥ρ02∥0 + ∥µ0

2∥0) + C hk+1
(
∥f1(u, v)∥L∞(0,tn;Hk+1(Ω)) + ∥u∥L∞(0,tn;Hk+1(Ω))

+ ∥v∥L∞(0,tn;Hk+1(Ω)) + ∥Dtu∥L1(0,tn;Hk+1(Ω)) + ∥Dtv∥L1(0,tn;Hk+1(Ω)) + ∥f2(u, v)∥L∞(0,tn;Hk+1(Ω))

)
+ C ∆t

(
∥Dttu∥L1(0,tn;L2(Ω)) + ∥Dttv∥L1(0,tn;L2(Ω))

)
.

Using the estimations of ∥ρn1∥0 and ∥µn
1∥0 from Lemma 5.3 and the above inequality, we

obtain the desired result.
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Theorem 5.9. Let (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) be the solution of the weak formulation (5.1.8)-
(5.1.9) and (Un, V n) ∈ Hk

h(Ω) × Hk
h(Ω) be the solution of the discrete scheme (5.2.16)-

(5.2.18). Then, the following error estimations holds

∥∇(Un − u(tn))∥0 + ∥∇(V n − v(tn))∥0 ≤ C
(
∥∇U0 −∇u(t0)∥0 + ∥∇V 0 −∇v(t0)∥0

)
+ C hk+1

(
|u(0)|k+1 + |v(0)|k+1 + ∥u∥L∞(0,tn,Hk+1(Ω)) + ∥v∥L∞(0,tn,Hk+1(Ω))

+ ∥f1(u, v)∥L∞(0,tn,Hk+1(Ω)) + ∥f2(u, v)∥L∞(0,tn,Hk+1(Ω)) + ∥Dtu∥L2(0,tn,Hk+1(Ω))

+ ∥Dtv∥L2(0,tn,Hk+1(Ω))

)
+ C∆t

(
∥Dttu∥L2(0,tn;L2(Ω)) + ∥Dttv∥L2(0,tn;L2(Ω))

)
.

Proof. The error estimation for the fully discrete solution (Un, V n) in the energy norm can
be done by employing the Ritz projection operator.

We first decompose the term Un−u(tn) as Un−u(tn) := Un−Rhu(tn)+Rhu(tn)−u(tn).
Since, we can bound the term using the approximation property of the Ritz projection
operator, we will focus to estimate the term ∥∇Un −∇Rhu(tn)∥0.

Using the fully discrete scheme (5.2.16) -(5.2.17), and the definition of the Ritz projection
operator, we write an equation in terms of ρn2 as

mh

(ρn2 − ρn−1
2

∆t
, φh

)
+A1(g1(Π

0
kU

n), g2(Π
0
kV

n)) ah(ρ
n
2 , φh) = ⟨f1h(Un, V n), φh⟩

−⟨f1(u(tn), v(tn)), φh⟩ −mh(∂nRhu(tn), φh) + (ut(tn), φh)

+
(
A1(g1(u(tn)), g2(v(tn)))−A1(g1(Π

0
kU

n), g2(Π
0
kV

n))
)
a(u(tn), φh). (5.4.10)

Following (5.4.2), we can bound the term |⟨f1h(Un, V n), φh⟩−⟨f1(u(tn), v(tn)), φh⟩|. The
last term of (5.4.10) can be bounded as follows∣∣∣A1

(
g1(u(tn)), g2(v(tn))

)
−A1

(
g1(Π

0
kU

n), g2(Π
0
kV

n)
)∣∣∣ |a(u(tn), φh)|

≤ C
(
hk+1|u(tn)|k+1 + hk+1|v(tn)|k+1 + ∥ρn2∥0 + ∥µn

2∥0
)
∥∆u(tn)∥0 ∥φh∥0,

(5.4.11)

where, we have exploited assumption 5.1 and the approximation property of the operator
Π0

k. Further, following the technique mentioned in [95, (34),Theorem 3.3], we obtain

| −mh(∂nRhu(tn), φh) + (Dtu(tn), φh)| ≤ C
1

∆t

(
ηn1 + ηn2

)
∥φh∥0. (5.4.12)

Upon substituting φh = ∂ρn2 in (5.4.10), and using (5.4.12), (5.4.10), and boundedness of
load term, we obtain
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mh(∂ρ
n
2 , ∂ρ

n
2 ) +

m0

2
α∗ ∂∥∇ρn2∥20 ≤ C hk+1

(
|u(tn)|k+1 + |v(tn)|k+1

+ |f1(u(tn), v(tn))|k+1

)
∥∂ρn2∥0 + C

1

∆t

(
∥ηn1 ∥0 + ∥ηn2 ∥0

)
∥∂ρn2∥0 + C

(
∥ρn2∥0 + ∥µn

2∥0
)
∥∂ρn2∥0.

Using Young’s inequality, kick back arguments, and proceeding analogous arguments as in
[95], we can deduce that

∥∇ρn2∥20 ≤ ∥∇ρn−1
2 ∥20 + C h2k+2(∆t)

(
|u(tn)|2k+1 + |v(tn)|2k+1 + |f1(u(tn), v(tn))|2k+1

)
+C

1

∆t
(∥ηn1 ∥20 + ∥ηn2 ∥20) + ∆t

(
∥ρn2∥20 + ∥µn

2∥20
)
. (5.4.13)

Similarly from (5.2.17) and proceeding same as (5.4.13), we obtain

∥∇µn
2∥20 ≤ ∥∇µn−1

2 ∥20 + C h2k+2(∆t)
(
|u(tn)|2k+1 + |v(tn)|2k+1 + |f2(u(tn), v(tn))|2k+1

)
+C

1

∆t
(∥ξn1 ∥20 + ∥ξn2 ∥20) + ∆t

(
∥ρn2∥20 + ∥µn

2∥20
)
. (5.4.14)

Upon summing Equations (5.4.13) and (5.4.14) and letting the sum ν = 1, · · · , n, and
using the estimation of

∑n
ν=1

(
∥ρν2∥0 + ∥µν

2∥0
)

from Theorem 5.8, we obtain the desired
result.

5.5 Error estimation for linearized scheme

In this section, we estimate the rate of convergence in the space variable as well as the
time variable for the approximation (Ũn, Ṽ n) satisfying (5.2.19)-(5.2.20). Employing the
Ritz projection operator Rh (see (5.3.1)), we split the terms u(tn)− Ũn and v(tn)− Ṽ n as
follows

u(tn)− Ũn := ρn1 + ρ̃2
n; v(tn)− Ṽ n := µn

1 + µ̃2
n.

Theorem 5.10. Let (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) be the solution of equations (5.1.8)-(5.1.11)
and {(Ũn, Ṽ n)}n ∈ Hk

h × Hk
h be the sequence of solutions of (5.2.16)-(5.2.18) for time

steps tn ∈ [0, T ]. Further, assume that the exact solution (u, v), and the force func-

tion fi(u, v), i ∈ {1, 2} satisfy the regularity assumptions, i.e. ∥u∥L∞(0,tn;Hk+1(Ω)) <

∞, ∥v∥L∞(0,tn;Hk+1(Ω)) < ∞, ∥Dtu∥L1(0,tn;Hk+1(Ω)) < ∞, ∥Dtv∥L1(0,tn;Hk+1(Ω)) < ∞,

∥Dttu∥L1(0,tn;Hk+1(Ω)) < ∞, ∥Dttv∥L1(0,tn;Hk+1(Ω)) < ∞, ∥fi(u, v)∥L1(0,tn;Hk+1(Ω)) <∞.
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Then the following error estimation holds

∥Ũn − u(tn)∥0 + ∥Ṽ n − v(tn)∥0 ≤ C
(
∥U0 − u(0)∥0 + ∥V 0 − v(0)∥0

)
+ C hk+1

(
∥u∥L∞(0,tn;Hk+1(Ω)) + ∥v∥L∞(0,tn;Hk+1(Ω)) + ∥Dtu∥L1(0,tn;Hk+1(Ω)) + ∥Dtv∥L1(0,tn;Hk+1(Ω))

+∥f1(u, v)∥L∞(0,tn;Hk+1(Ω)) + ∥f2(u, v)∥L∞(0,tn;Hk+1(Ω))

)
+ C ∆t

(
∥Dttu∥L1(0,tn;Hk+1(Ω))

+∥Dtu∥L1(0,tn;Hk+1(Ω)) + ∥Dttv∥L1(0,tn;Hk+1(Ω)) + ∥Dtv∥L1(0,tn;Hk+1(Ω))

)
.

The positive generic constant C depends on mesh regularity γ, stability parameters of the

discrete bilinear forms ah(·, ·) and mh(·, ·) but is independent of the mesh parameter h and

time step ∆t.

Proof. Using the projection operator Rh, we split the error as u(tn)− Ũn := ρn1 + ρ̃n2 and
v(tn)− Ṽ n := µn

1 + µ̃n
2 . The estimations of ρn1 and µn

1 are known from the approximation
property of Rh. In order to estimate ρ̃n2 and µ̃n

2 , we proceed as follows. By considering
(5.2.19), we obtain

mh

( ρ̃n2 − ρ̃n−1
2

∆t
, φh

)
+A1

(
g1(Π

0
kŨ

n−1), g2(Π
0
kṼ

n−1)
)
ah(ρ̃

n
2 , φh) = ⟨f1h(Ũn−1, Ṽ n−1), φh⟩

−⟨f1(u(tn), v(tn)), φh⟩ −mh

(Rhu(tn)−Rhu(tn−1)

∆t
, φh

)
+ (Dtu(tn), φh)

+
[
A1

(
g1(u(tn)), g2(v(tn))

)
−A1

(
g1(Π

0
kŨ

n−1), g2(Π
0
kṼ

n−1)
)]
a(u(tn), φh). (5.5.1)

The load term in the right hand side can be rewritten as follows

|⟨f1h(Ũn−1, Ṽ n−1), φh⟩ − ⟨f1(u(tn), v(tn)), φh⟩|

≤ |⟨f1(Π0
kŨ

n−1,Π0
kṼ

n−1),Π0
kφh⟩ − ⟨f1(Π0

ku(tn),Π
0
kv(tn)),Π

0
kφh⟩|

+ |⟨f1(Π0
ku(tn),Π

0
kv(tn)),Π

0
kφh⟩ − ⟨f1(u(tn), v(tn)),Π0

kφh⟩|

+ |⟨f1(u(tn), v(tn)),Π0
kφh⟩ − ⟨f1(u(tn), v(tn)), φh⟩|.

(5.5.2)

Using assumption 5.1, the approximation property of the L2 projection operator Π0
k, we

have:

|⟨f1h(Ũn−1, Ṽ n−1), φh⟩ − ⟨f1(u(tn), v(tn)), φh⟩|

≤ C
(
∥Ũn−1 − u(tn)∥0 + ∥Ṽ n−1 − v(tn)∥0

)
∥φh∥0

+hk+1
(
|u(tn)|k+1 + |v(tn)|k+1 + |f1(u(tn), v(tn))|k+1

)
∥φh∥0. (5.5.3)
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Using the analogous technique as [95, Theorem 3.3], we split the term as

| −mh(
Rhu(tn)−Rhu(tn−1)

∆t
, φh) + (Dtu(tn), φh)| ≤ C

1

∆t

(
ηn1 + ηn2

)
∥φh∥0. (5.5.4)

Furthermore, the nonlocal coefficients can be decomposed as follows

| − A1(g1(Π
0
k−1Ũ

n−1), g2(Π
0
k−1Ṽ

n−1)) +A1(g1(u(tn)), g2(v(tn)))| ≤ C
(
∥ρ̃n−1

2 ∥0

+ hk+1|u(tn)|k+1 + ∥Dtu∥L1(tn−1,tn,L2(Ω)) + ∥µ̃n−1
2 ∥0 + hk+1|v(tn)|k+1 + ∥Dtv∥L1(tn−1,tn,L2(Ω))

)
.

(5.5.5)

Upon substituting (5.5.3) -(5.5.5) into (5.5.1), we have

∥ρ̃n2∥0 ≤ ∥ρ̃n−1
2 ∥0 + C ∆t hk+1

(
|u(tn)|k+1 + |v(tn)|k+1 + |f1(u(tn), v(tn))|k+1

)
+∆t

(
∥Ũn−1 − u(tn)∥0 + ∥Ṽ n−1 − v(tn)∥0

)
+ C

(
ηn1 + ηn2

)
. (5.5.6)

Using same technique as above, we obtain

∥µ̃n
2∥0 ≤ ∥µ̃n−1

2 ∥0 + C ∆t hk+1
(
|u(tn)|k+1 + |v(tn)|k+1 + |f2(u(tn), v(tn))|k+1

)
+∆t

(
∥Ũn−1 − u(tn)∥0 + ∥Ṽ n−1 − v(tn)∥0

)
+ C

(
ξn1 + ξn2

)
. (5.5.7)

We decompose the term

∥Ũn−1 − u(tn)∥0 ≤ C ∥Ũn−1 −Rhu(tn−1)∥0 + hk+1 |u(tn−1)|k+1 + ∥u(tn−1)− u(tn))∥0.
(5.5.8)

and

∥Ṽ n−1 − v(tn)∥0 ≤ C ∥Ṽ n−1 −Rhv(tn−1)∥0 + hk+1 |v(tn−1)|k+1 + ∥v(tn−1)− v(tn))∥0.
(5.5.9)

Using the estimations (5.5.8), and (5.5.9), and adding (5.5.6) and (5.5.7), we deduce

∥ρ̃n2∥0 + ∥µ̃n
2∥0 ≤ C

(
∥U0 − u(t0)∥0 + ∥V 0 − v(t0)∥0

)
+ C hk+1

(
∥u∥L∞(0,tn,Hk+1(Ω))

+ ∥v∥L∞(0,tn,Hk+1(Ω)) + ∥f1(u, v)∥L∞(0,tn,Hk+1(Ω)) + ∥f2(u, v)∥L∞(0,tn,Hk+1(Ω)) + ∥Dtu∥L∞(0,tn,Hk+1(Ω))

+ ∥Dtv∥L∞(0,tn,Hk+1(Ω))

)
+ C ∆t

(
∥Dttu∥L1(0,tn;L2(Ω)) + ∥Dttv∥L1(0,tn;L2(Ω))

)
.

(5.5.10)
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Together with (5.5.10) and an application of the estimations ∥ρn1∥0 and ∥µn
1∥0 ( using

Lemma 5.3 ), we obtain the desired result.

5.6 Numerical Experiments

In this section, we study the convergence and the accuracy of the virtual element method
by solving a nonlocal parabolic problem for a manufactured solution. We consider a square
domain, Ω = [0, 1] × [0, 1]. The computational domain is discretized with different type
of elements, viz., distorted square, non-convex mesh and smoothed Voronoi. A few repre-
sentative meshes are shown in Figure 5.1. In this study, for spatial discretization, we have
considered the virtual element space of orders, k = 1,2 and 3. For temporal discretization,
we have employed the backward Euler time integration scheme. For convergence study,
the errors are computed at the final time T in the L2 and the H1 norms. Since the discrete
solutions are implicitly defined on the virtual space, the errors are computed using the two
projection operators as follows:

L2-norm error: Eh,0 :=
√∑

E∈Σh

∥u(T )− Π0
k,EU

NT ∥20,E.

H1-norm error: Eh,1 :=
√∑

E∈Σh

∥∇u(T )−∇Π∇
k,EU

NT ∥20,E.

(a) Distorted Square (b) Non-convex (c) Smoothed Voronoi

Figure 5.1: A schematic representation of different discretizations employed in this study.

Consider the model problem (5.1.1)-(5.1.5), where the nonlocal coefficients are defined
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as:

A1

(
g1(u), g2(v)

)
:= 3 + cos(g1(u)) + sin(g2(v))

A2

(
g1(u), g2(v)

)
:= 5− cos(g1(u)) + sin(g2(u)).

The force functions (f1, f2) are computed by imposing the following manufactured solu-
tions:

u = (x− x2) (y − y2) e−t

v = 2 (x− x2) (y − y2) e2t

as the exact solutions of (5.1.1)-(5.1.2) and g1(u) =
∫
Ω
u dΩ, g2(v) =

∫
Ω
v dΩ. To re-

duce the computational cost, one additional variable is augmented to the nonlinear system
and the resulting nonlinear system is solved using the Newton’s method with a user speci-
fied tolerance as O(10−10). This ensures that the sparsity of the Jacobian is retained. The
nonlinear loop takes between two to five iterations for the convergence of the numerical so-
lution. The convergence of the error in the L2 and H1 norms for the independent variables,
u and v are shown in Figures 5.2-5.3 for k = 1,2 and k = 3, respectively. It is seen that
the numerical scheme converges at an optimal order in the respective norms. In Figure 5.5,
the convergence behaviour of the numerical solution obtained from the linearized scheme
(5.2.19) -(5.2.20) for the virtual element space of orders k = 1,2 is shown. It is observed
that the numerical solution converges optimally to the analytical solution as predicted in
Theorem 5.10.

Now, we study the convergence behavior in the temporal variable t. This is done by
setting the mesh parameter h = 1/80 for all the considered discretization types. The time
increment is chosen as ∆t = 1/4, 1/8, 1/16, 1/32. The errors are computed at the end of
the each time step tn for n = 1, . . . , NT and added to obtain the cumulative errors up to the
final time T and is given by:

e0,T,h,0 :=

(
∆t

NT∑
n=1

(∑
E∈Σh

∥u(tn)− Π0
k,EU

n∥20,E

))1/2

. (5.6.1)

In this case, we only report the results for the lowest order virtual element space, i.e., k =

1. Figure 5.4 shows the convergence of the error in the L2 norm for both the independent
variables. It can be inferred that the numerical scheme yields optimal convergence rate as
predicted in Theorem 5.8. Further, it is noted that for higher order virtual element space,
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the numerical scheme converges at an optimal rate.
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Figure 5.2: Convergence of the errors in the L2 norm and H1 norm for k = 1 and 2 and
for the variables, u and v
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Figure 5.3: Convergence of the errors in the L2 norm and H1 norm for k = 3 and for the
variables, u and v
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Figure 5.4: Convergence of the error in the L2 norm k = 1 and h = 1/80 and for the
variables, u and v
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Figure 5.5: Convergence of the errors in the L2 norm and H1 norm for k = 1 and 2 and
for the variables, u and v for the linearized scheme
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5.7 Summary

In this chapter, we have employed the virtual element method to solve the coupled non-
local parabolic equation. First, we prove optimal order convergence for the semi-discrete
virtual element formulation with respect to L2 and H1 norms. For defining a fully discrete
scheme, we use the backward Euler method to discretise the time derivative, and the vir-
tual element method is used for the spatial discretisation. The presence of the nonlocal
diffusive coefficients reduces the sparsity of the Jacobian of the nonlinear system. This
increase the computational and storage complexity, in contrast to the local problem. To
alleviate this difficulty, we have extended Gudi’s approach within the context of the virtual
element method. In the discrete system of equations, we have introduced two more new
variables corresponding to the nonlocal functions g1 and g2. The explicit definition of the
entries of the Jacobian obtained for the modified system of equations reveals that the Jaco-
bian is sparse. We derived the optimal order error estimates in the L2 and H1 norms for the
fully discrete scheme. To further reduce the computational complexity, a linearized scheme
without compromising the rate of convergence in different norms was proposed. Finally,
the theoretical results are justified through numerical experiments over arbitrary polygonal
meshes.
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Chapter 6

Future Work

As an extension of this thesis, we suggest the following topics for further investigation.

1. We can formulate a computable stabilized VEM scheme for the nonlinear convection-
diffusion-reaction equation and derive apriori error estimates under suitable norm for
other residual based stabilizers.

2. Some symmetric stabilization methods (for example, the Local Projection stabiliza-
tion method) have been successfully tested in FEM context. We can investigate these
symmetric stabilization methods in the VEM framework. One study the effect of
these stabilizer in VEM scheme, in sense of both theoretical analysis and numerical
experimentation, for convection dominated problems.

3. We can explore the performance of stabilized VEM for nonstationary and nonlinear
problems.

4. We can look into the study of VEM for a system of time-dependent nonlinear convection-
diffusion-reaction equations that arise in several practical applications. In fact, this
topic is currently under our investigation.

5. We can scrutinize the addition of various stabilization method to nonconforming
VEM.

6. In practice, the Navier-Stokes equation have isolated solutions, usually mathemati-
cally expressed by the notion of branches of nonsingular solutions. We can propose
and analyse VEM approximation of branches of nonsingular solutions.

7. For the two-grid method, we can try to derive optimal apriori error estimates in H1

norm.
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8. Nonlocal models arise in many important practical applications. Few model exam-
ples are classical Lotka-Volterra prey-predator model with nonlocal diffusion, nonlo-
cal parabolic systems modelling spread of a disease or epidemic, modelling diffusion
in heterogeneous environment to cracks and fractures in composites. We shall con-
sider approximating these nonlocal problems on polygonal or polyhedral discretisa-
tion using 2D or 3D VEM.

9. Nonlocal models for convection-diffusion problems exist in literature. For the con-
vection dominated case, we shall consider studying stabilized VEM approximation
of the nonlocal convection-diffusion equation.

167



Bibliography

[1] J. Donea and A. Huerta, Finite Element Methods for Flow Problems. Wiley, 2003.

[2] A. N. Brooks and T. Hughes, “Streamline upwind Petrov-Galerkin formulations for convection domi-
nated flows with particular emphasis on the incompressible navier-stokes equations,” Comput. Methods
Appl. Mech. Engrg, vol. 32, no. 1-3, pp. 199–259, 1982.

[3] A. Mizukami and T. J. R. Hughes, “A Petrov-Galerkin finite element method for convection-dominated
flows: An accurate upwinding tech-nique for satisfying the maximum principle.” Comput. Methods
Appl. Mech. Engrg., vol. 50, pp. 181–193, 1985.

[4] Wachspress, A Rational Finite Element Basis. Academic Press, New York, 1975.

[5] D. A. D. Pietro and A. Ern, “A hybrid high-order locking-free method for linear elasticity on general
meshes,” Comput. Methods Appl. Mech. Eng., vol. 283, pp. 1–21, 2015.

[6] L. Mu, J. Wang, and X. Ye, “Weak galerkin finite element methods for the biharmonic equation on
polytopal meshes,” Numer. Methods Partial Differ. Equ., vol. 30, no. 3, pp. 1003–1029, 2014.

[7] A. Cangiani, Z. Dong, E. H. Georgoulis, and P. Houston, “hp-version discontinuous Galerkin methods
on polygonal and polyhedral meshes,” Springer Briefs in Mathematics, 2017.

[8] L. B. da Veiga, K. Lipnikov, and G. Manzini, “The mimetic finite difference method for elliptic prob-
lems,” MS&A. Modeling, Simulation and Applications. Springer, 2014.

[9] J. Droniou and R. Eymard, “A mixed finite volume scheme for anisotropic diffusion problems on any
grids.” Numer. Math., vol. 105, pp. 35–71, 2006.

[10] N. Sukumar and A. Tabarraci, “Conforming polygonal finite elements,” Int. J. Numer. Methods Engrg.,
vol. 61, no. 12, pp. 2045–2066, 2004.

[11] L. Beirao Da Veiga, F. Brezzi, and L. Marini, “Virtual Elements for linear elasticity problems,” SIAM J
Numer Anal, vol. 51, pp. 794–812, 2013.

[12] L. Beirao Da Veiga, F. Brezzi, L. Marini, and A. Russo, “Virtual Element Method for general second-
order elliptic problems,” Math Models Methods Appl Sci, vol. 26, no. 4, pp. 729–750, 2016.

168



[13] A. Cangiani, G. Manzini, and O. Sutton, “Conforming and nonconforming virtual element methods for
elliptic problems,” IMA J. Numer. Anal., vol. 37, no. 3, pp. 1317–1354, 2017.

[14] G. Vacca and L. Beirao Da Veiga, “Virtual element methods for parabolic problems on polygonal
meshes,” Numer Meth Part D E, vol. 31, no. 6, pp. 2110–2134, 2015.

[15] G. Vacca, “Virtual Element Methods for hyperbolic problems on polygonal meshes,” Comput Math
Appl, vol. 74, no. 5, pp. 882–898, 2017.

[16] D. Adak, E. Natarajan, and S. Kumar, “Convergence analysis of virtual element methods for semilinear
parabolic problems on polygonal meshes,” Numer Meth Part D E, vol. 35, no. 1, pp. 222–245, 2019.

[17] D. Adak, E. Natarajan, and S. Kumar, “Virtual element method for semilinear hyperbolic problems on
polygonal meshes,” Int J Comput Math, vol. 96, no. 5, pp. 971–991, 2019.

[18] D. Adak, S. Natarajan, and E. Natarajan, “Virtual element method for semilinear elliptic problems on
polygonal meshes,” Appl Numer Math, vol. 145, pp. 175–187, 2019.

[19] A. Cangiani, P. Chatzipantelidis, G. Diwan, and E. Georgoulis, “Virtual element method for quasilinear
elliptic problems,” IMA J. Numer. Anal., Available online http://doi.org/10.1093/imanum/drz035., 2019.

[20] L. Beirao Da Veiga, “Mixed virtual element methods for general second order elliptic problems on
polygonal meshes,” Math. Mod. Numer. Anal., vol. 50, no. 2, pp. 727–747, 2016.

[21] L. Beirao Da Veiga, D. Mora, G. Rivera, and R. Rodriguez, “A virtual element method for the acoustic
vibration problem,” Numer. Math., vol. 136, pp. 725–763, 2017.

[22] L. Beirao Da Veiga, C. Lovadina, and G. Vacca, “Divergence free virtual elements for the Stokes prob-
lem on polygonal meshes,” Math. Mod. Numer. Anal., vol. 51, pp. 509–535, 2017.

[23] L. Beirao Da Veiga, F. Brezzi, F. Dassi, L. Marini, and A. Russo, “Virtual element approximation of 2D
magnetostatic problems,” Comput. Meth. Appl. Mech. Engrg., vol. 327, pp. 173–195, 2017.

[24] L. Beirao Da Veiga and G. Manzini, “Residual a posteriori error estimation for the Virtual Element
Method for elliptic problems,” Math. Mod. Numer. Anal., vol. 49, no. 2, pp. 577–599, 2015.

[25] M. Benedetto, S. Berrone, S. Pieraccini, and S. Scialo, “The virtual element method for discrete fracture
network simulations,” Comput. Meth. Appl. Mech. Engrg., vol. 280, pp. 135–156, 2014.

[26] L. Beirao Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini, and A. Russo, “Basic principles of
virtual element methods,” Math Models Methods Appl Sci, vol. 23, pp. 199–214, 2013.

[27] B. Ahmad, A. Alsaedi, F. Brezzi, L. Marini, and A. Russo, “Equivalent projectors for virtual element
methods,” Comput. Math. with Appl., vol. 66, no. 3, pp. 376–391, 2013.

[28] L. Beirão da Veiga, F. Brezzi, L. Marini, and A. Russo, “Virtual element method for general second-
order elliptic problems on polygonal meshes,” Math. Models Methods Appl. Sci., vol. 26, no. 04, pp.
729–750, 2016.

169



[29] L. Beirão da Veiga, F. Brezzi, L. Marini, and A. Russo, “The hitchhiker’s guide to the virtual element
method,” Math. Models Methods Appl. Sci., vol. 24, no. 08, pp. 1541–1573, 2014.

[30] A. Cangiani, G. Manzini, and O. J. Sutton, “Conforming and nonconforming virtual element methods
for elliptic problems,” IMA J. Numer. Anal., vol. 37, no. 3, pp. 1317–1354, 2016.

[31] M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, and S. Scialo, “Order preserving SUPG stabi-
lization for the virtual element formulation of advection-diffusion problems,” Comput. Methods Appl.
Mech. Eng., vol. 311, pp. 18–40, 2016.

[32] N. Kumar, “Unsteady flow against dispersion in finite porous media,” J. Hydrol., vol. 63, no. 3-4, pp.
345–358, 1983.

[33] J. Isenberg and C. Gutfinger, “Heat transfer to a draining film,” Int. J. Heat Mass Transf., vol. 16, no. 2,
pp. 502–512, 1973.

[34] W.Frydrychowicz and A. Selvadurai, “On some aspects of nonlinear convection-diffusion-reaction aris-
ing in heat-induced moisture transport in porous media,” Int. J. Engng. Sci., vol. 34, no. 4, pp. 425–436,
1996.

[35] A. Brooks and T. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated
flows with particular emphasis on the incompressible Navier-Stokes equations,” Comput. Methods Appl.
Mech. Eng., vol. 32, pp. 199–259, 1982.

[36] E. Burman, “Consistent SUPG-method for transient transport problems: Stability and convergence,”
Comput. Methods Appl. Mech. Eng., vol. 199, pp. 1114–1123, 2010.

[37] M. Braack and E. Burman, “Local projection stabilization for the Oseen Problem and its Interpretation
as a Variational Multiscale Method,” SIAM J. Numer. Anal., vol. 43, no. 6, pp. 2544–2566, 2006.

[38] G. Matthies, P. Skrzypacz, and L. Tobiska, “A unified convergence analysis for local projection stabili-
sations applied to the Oseen problem,” ESAIM:M2AN, vol. 41, no. 4, pp. 713–742, 2007.

[39] E. Burman and P. Hansbo, “Edge stabilization for Galerkin approximations of convection-diffusion-
reaction problems,” Comput. Methods Appl. Mech. Eng., vol. 193, no. 15-16, pp. 1437–1453, 2004.

[40] F. Brezzi, K. Lipnikov, and V. Simoncini, “A family of mimetic finite difference methods on polygonal
and polyhedral meshes,” Math. Models Methods Appl. Sci., vol. 15, no. 10, pp. 1533–1551, 2005.

[41] T. S. Palmer, “Discretizing the diffusion equation on unstructured polygonal meshes in two dimensions,”
Ann. Nucl. Energy, vol. 28, no. 18, pp. 1851–1880, 2001.

[42] J. C.Ragusa, “Discontinuous finite element solution of the radiation diffusion equation on arbitrary
polygonal meshes and locally adapted quadrilateral grids,” Journal of Computational Physics, vol. 280,
pp. 195–213, 2015.

170



[43] S. Berrone, A. Borio, and G. Manzini, “SUPG stabilization for the nonconforming virtual element
method for of advection-diffusion-reaction equations,” Comput. Methods Appl. Mech. Eng., vol. 340,
pp. 500–529, 2018.

[44] Y. Li and M. Feng, “A local projection stabilization virtual element method for of convection-diffusion-
reaction equation,” Appl. Math. Comput., vol. 411, p. 126536, 2021.

[45] D. Irisarri, “Virtual element method stabilization for convection-diffusion-reaction problems using the
link-cutting condition,” Calcolo, vol. 54, pp. 141–154, 2017.

[46] Mircea Sofonea and Andaluzia Matei, Mathematical Models in Contact Mechanics. Cambridge Uni-
versity press, New York, 2012.

[47] M. Bause and K. Schwegler, “Analysis of stabilized higher-order finite element approximation of non-
stationary and nonlinear convection-diffusion-reaction equations,” Comput. Methods Appl. Mech. En-
grg, vol. 209-212, pp. 184–196, 2012.

[48] L. Beirao Da Veiga, A. Chernov, L. Mascotto, and A. Russo, “Exponential convergence of the hp virtual
element method in presence of corner singularities.” Numer. Math., vol. 138, pp. 581–613, 2018.

[49] A. Cangiani, E. Georgoulis, T. Pryer, and O. Sutton, “A posteriori error estimates for the virtual element
method.” Numer. Math., vol. 137, pp. 857–892, 2018.

[50] Xin Ye, Shangyou Zhang, and Yourong Zhu, “Stabilzer-free weak Galerkin methods for monotone
quasilinear elliptic PDE’s,” Results in Applied Mathematics, vol. 8, p. 100097, 2020.

[51] L. Beirao Da Veiga, A. Chernov, L. Mascotto, and A. Russo, “Basic principles of hp virtual elements
on quasiuniform meshes,” Math Models Methods Appl Sci, vol. 26, no. 8, pp. 1567–1598, 2016.
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