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Abstract

This work concerns residual-based stabilization of the Virtual Element Method for non-
linear convection-diffusion problems. It is well-known that the numerical simulations of
singularly perturbed problem produce solutions with spurious oscillations. In chapter one,
we discuss the Galerkin approximation of the convection-diffusion equation. From the in-
vestigation of a simple one-dimensional problem, it is revealed that there is an onset of
unphysical oscillations in the Galerkin solution for dominant convection. From one per-
spective, very rigorous mesh refinement acts as a remedy. As this resolve is non-viable, we
study residual-based stabilization methods that circumvent mesh fine-tuning. Then we in-
troduce the polytopal Galerkin method called the Virtual Element Method. We clearly state
the advantage of VEM over the existing polytopal methods and briefly give the construc-
tion of the VEM space. We demonstrate the usage of the polynomial projection operators
ITY, 1% and IT)_ .

Chapter two is devoted to studying the SUPG stabilization of VEM for the semilinear
convection-diffusion-reaction equation. We prove theoretical estimates involving the mesh
size h and the polynomial order p. For analysis, we prove the existence of an interpola-
tion operator onto VEM space with optimal approximation property with respect to both
the parameters h, p for L?> norm and H' semi-norm. Under suitable choice of the SUPG
parameter, the error estimate showing optimal order of convergence is derived. We obtain
the optimal convergence rate in H'! semi-norm and L? norm for convection-dominated and
reaction-dominated phenomena, respectively. In fact we obtain optimal order for the en-
ergy norm ||| - |||. Numerical experiments conducted verified our theoretical results over
convex and nonconvex meshes for VEM order p = 1, 2, 3.

The shock-capturing stabilization of VEM for the convection-diffusion equation is an-
alyzed in chapter 3. We begin by formulating a computable VEM scheme stabilized with
the shock-capturing technique for the linear convection-diffusion-reaction equation. It is
noted that the discretization of a linear problem produced a nonlinear discrete scheme. The
existence of the VEM solution was shown with the help of a variant of Brouwers fixed
point theorem. The efficiency of the shock-capturing method was investigated numerically
by comparing it with the SUPG method, for a linear problem with discontinuous boundary

conditions, on different polygonal meshes. With the success of shock-capturing in reducing
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spurious oscillations, we proceed to investigate in detail the shock-capturing stabilization
of VEM for the semilinear convection-diffusion equation. We discussed two variants of
shock-capturing technique, where in the first case, we add isotropic artificial diffusion, and
the second type adds anisotropic diffusion. Error estimate with similar order of conver-
gence as the SUPG method is derived. We used the Newton method in the simulations
to solve a nonlinear system. Numerical experiments conducted reveal the effectiveness of
the shock-capturing stabilization in diminishing the cross-wind oscillations present in the
SUPG solution.

The fourth chapter discusses the SUPG stabilization of VEM for the quasilinear convection-
diffusion-reaction equation. In this, we study the approximation of branches of nonsingular
solutions. We show the existence and uniqueness of a branch of discrete solution approx-
imating the branch of the nonsingular solution through results proved by Brezzi et al. for
a much general class of nonlinear equations. Convergence estimate showing optimal order
for H' seminorm and the energy norm ||| - ||| were derived. Since the problem is quasi-
linear, on the fine mesh using the Newton method to solve the system is time-consuming.
Therefore we use the two-grid method that involves two meshes of different mesh sizes for
solving the nonlinear system of equations. Numerical experiments conducted verified the
theoretical results. The CPU time taken by the two-grid for solving the system is halved
compared to the time taken by the Newton method on a fine mesh.

In Chapter 5, we consider the discretization of the nonlocal coupled parabolic problem
within the framework of the virtual element method. In fully discrete formulation, the
backward Euler method is used for discretizing the time derivative, and VEM is used for
spatial discretization. The presence of nonlocal coefficients makes the computation of the
Jacobian more expensive in Newton’s method and destroys the sparsity of the Jacobian. In
order to resolve this problem, we propose an equivalent formulation that yields a sparse
Jacobian. We derive the error estimates in the L? and H' norms. A linearised scheme
without compromising the convergence rate in different norms is proposed to reduce the
computational complexity further. Finally, the theoretical results are verified through the
numerical experiments conducted on arbitrary polygonal meshes.

The final chapter discusses the possible works related to problems studied in this thesis

that can be investigated in the future.
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Chapter 1

Introduction

1.1 Convection-diffusion-reaction equation

The convection-diffusion-reaction equation arise in several fields such as fluid dynam-
ics. Some engineering applications include tracking contaminant spread in a moving water
body, pollutant transport in atmosphere, water percolation and flow in porous media (water
monitoring), pressure variation of the wind surrounding the wings of an aircraft, tracing
oil spill space-time evolution in oceans and subsurface flow problems like crude oil extrac-
tion and gas storage beneath the sea bed or land surface. A few biological applications are
blood flow in the arteries, and tissue physiology and morphogenesis depending on diffusion

of chemical morphogens in the extra-cellular fluid or matrix.

On a bounded domain 2 C R?, consider a simple steady linear convection-diffusion

equation given by,

—V-(KVu)+b-Vu = f in Q (1.1.1)
v = 0 on ON.

The equation in (1.1.1) involves combination of convection and diffusion processes. The
solution wu(z) is the variable of interest such as species concentration for mass transfer or
temperature concentration for heat transfer. The variable K > 0 is the diffusion coefficient
such as mass diffusivity for particle motion or thermal diffusivity for heat transport. The
function b(z) € [L>°(Q)]? is the velocity field with which the quantity u is moving. The
right hand-side function f gives the source or sink of quantity u. The term —V - (K Vu)

describes diffusion and the term b - Vu represent convection.

1



The weak form of (1.1.1) is, Find u € H}(f2) such that

(K Vu, Vo)g+ (b-Vu, v)g = (f, v)a Yo € Hy(Q). (1.1.2)

The Galerkin (or numerical) approximation of (1.1.2) produces numerical solutions
with unphysical oscillations. When the non-symmetric convection term dominates, the best
approximation property in the energy norm of the Galerkin method is affected. This leads
to poor approximation of the solution of weak form (1.1.2) by the numerical methods. We
briefly investigate the Galerkin approximation of the convection-diffusion equation using a
simple 1-D example (refer [1]) whose exact solution is known. Consider 1-D convection-

diffusion problem

WUy — €Uy, =1, x €0,1] (1.1.3)
w(0) =0 and u(1)=0. (1.1.4)

Let us denote v = E. The exact solution of the model problem (1.1.3) is
€

w(z) = = (m _ 1o emtyr) ewp(”)) .

w 1 —expy

Let us apply the Galerkin finite element method method to obtain a approximate solution
of (1.1.3). The weak formulation is defined as : To find u € H;(0,1) such that

1 1
/ (vwug, + veeu,) dr = / vdr Vv € H0,1).
0 0

As usual, discretise [0,1] using a uniform mesh of linear elements of size "h’, with nodes
x1, X, ...., T,. Let Vj be the finite dimensional subspace of Hg (0, 1) consisting of continu-
ous peicewise polynomial functions. For implementation, on a element (z;, x;11), we use

the following shape functions :

N(©=50-8) N6 =501+

where ¢ is the normalised coordinate, —1 < & < 1. Then on evaluating the bilinear forms

on an interval ( z;, x;41 ), we obtain, the local convection matrix,

w (-1 1
2\—-11



and the local diffusion matrix,

e[ 1 —1
h\-1 1)

We note that the diffusion matrix is symmetric, where as the convection matrix is non-

symmetric. Let us introduce mesh Peclet number,

Pe = w_h
2e

In problem (1.1.3), choose w = 1 and varying €. We solve the above 1-D problem using
the Galerkin finite element method(GFEM). The numerical approximation is computed
with a mesh of 10 uniform elements (i.e h = 1/10) for various mesh Peclet numbers
Pe = 0.25,0.4,0.7,1.0,1.5,5. A comparison of the plot of the exact solution and the
GFEM solution for different Pe is shown in figure 1.1. We note that the approximation
deteriorates as Peclet number approaches 1 and there is onset of oscillations when mesh

Peclet number is equal to 1 or greater than 1.

Alternatively, when convection dominates or the diffusion coefficient K is very small,
the solution of the model problem (1.1.1) develop layers where the magnitude of the so-
lution vary drastically within a thin region. Layers typically arise near a boundary, where
the solution must adhere to a boundary condition and layers may also occur in the interior
of the domain due to discontinuities in the coefficients. Then the onset of oscillation can
also be seen as a mesh resolution problem in the standard numerical methods. If mesh size
h is choosen to be smaller than diffusivity , then no oscillations occur. But such an extent
of mesh refinement is computationally very expensive and the method becomes practically
inapplicable. We need to look for a technique that helps to prevent the outbreak of oscilla-

tions without the need for mesh refinement. Such a remedy is called stabilization method.

In this thesis, we consider a stabilization strategy that adds weighted residual to the
numerical method - the well-known Streamline upwind Petrov-Galerkin (SUPG) method
introduced by Brooks and Hughes in [2]. The SUPG method adds artificial diffusion
along the streamline direction. For further improvement we use a nonlinear modifica-
tion of SUPG stabilization called shock-capturing method. Unlike SUPG method, the
shock-capturing method introduced in [3] satisfies the discrete maximum principle. In the
subsequent chapters we shall discuss these stabilization method for nonlinear convection-
diffusion equation in the setting of the recently introduced Galerkin method - the Virtual
Element Method (VEM).
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Figure 1.1: Plot of the exact solution and the GFEM solution.



1.2 The Virtual Element Method

For many practical applications, the approximation of model problem with numerical
methods involving polygonal discretisation of the domain are of interest. The idea of defin-
ing finite element shape function on polygons was proposed by Wachspress in [4]. In past,
many researchers have studied polytopal methods : the hybrid high-order method for linear
elasticity equation problem[5],weak Galerkin FEM for Biharmonic equation [6], discon-
tinuous Galerkin method [7]; mixed Mimetic finite difference [8], finite volume method [9]
and conforming polytopal finite elements [10].

The recently introduced Virtual Element Method (VEM) is a generalisation of the Fi-
nite Element Method (FEM) that is inherently adapted to deal with arbitrary polygonal or
polyhedral elements. Different from FEM is that, the finite dimensional VEM space con-
sists of polynomial space of a specified degree and other non-polynomial functions that are
locally solution of a partial differential equation. VEM is developed in such a way that the
entire computation can be carried out without explicitly evaluating the basis functions. The
computation of local stiffness and mass matrices are done using only the suitably defined
degrees of freedom of the virtual element space. This leads to easy handling of higher order
VEM and higher regularity VEM such as the more general C* continuity for v > 1. The
VEM allows the presence of hanging nodes in the elements, use of nonconvex elements
and more general adaptively refined meshes.

Since its inception VEM has been successfully applied to several problems for example
linear elasticity [11], conforming and nonconforming VEM for elliptic equation [12, 13],
parabolic problem [14], hyperbolic problem [15], semilinear and quasilinear problems [16—
19], mixed VEM [20] for elliptic problems, acoustic vibration problem [21], Stokes prob-
lem [22], 2D magnetostatic problems [23], posteriori error estimation for the elliptic prob-
lems [24]. In a more recent paper VEM has been also applied to models of underground
fluid flows [25] wherein the virtual element method becomes a more suitable approach in
overcoming the mesh generation problems that is adherent in the simulation of these fluid
flows. In the following section, we give a description of the virtual element method space

and its associated degrees of freedom.

1.3 VEM spaces

Let {75 }n>0 be a family of partitions of 2 into polygonal elements £ with h being

the maximum diameter over the polygons. Despite the fact that VEM can handle arbitrary
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polygons, just to ensure the existence of polynomial projection operators with optimal ap-
proximation properties we consider minimal restriction on polygons. For the sake of theo-
retical analysis, we require 7, to be a quasi-uniform polygonal partitioning of {2. To ensure
the shape regularity of 7, assume each element £ € 7}, satisfies the following (see [26]) :

Assumption 1.1. there exists positive constants v and ¢, independent of i and FE, such that

(i) E is star-shaped with respect to a disc D., of radius v hg, where hp is the element

diameter,
(ii) for edge e C FE, the length |e| > chp,
(iii) boundary of FE is made up of a finite number of edges, and h < chg.

Let P,(F) denote the space of polynomials of degree < p on E. An important com-
ponent in the VEM space is the following projection operators HZY and Hg, onto the poly-
nomial space. We define the projection operator IIY : H'(E) — P,(E) by (see [12]),

(V(u— HZu), qu)E =0 Vg, € P,(F) and /8E(Hpvu —u)ds =0, (1.3.1)
and II that is the L projection onto IP,(E) by,
(u—Thu,q,) , =0 Vg, € Py(E). (1.3.2)
Similarly, we compute the polynomial IT)_, (Vu) € (P,_1(E))? by,
(Vu—1I, ,Vu,q, ), =0 VYq, € (P, 1(E))> (1.3.3)
Consider the following space W¥ (see [27]) for each E € T}, by,
Wr={ve H(E)NC"OFE) : v, € Py(e)Vedgee € OE,Av € P,(E)}.
Now we define the local virtual element space vg as follows,

VE = {u eEWL st (u—TYuq), =0 Vge (]P’p(E)/IP’p_Q(E))} o (13.4)

where (P,(E)/P,_5(E)) is the subspace of P, ( £') containing polynomials in P, ( E') that are
L? orthogonal to P,_2(E) (see [12]). We consider the following set of degrees of freedom
(see Figure 1.2) on V7 by,



(G4) the values of u at the n(E) vertices of polygon F,

(G2) the values of u at p — 1 internal Gauss-Lobatto quadrature nodes of every edge e €
OF,

(G3) the moments up to order p — 2 of u in E, i.e.,
/ UQp_odr Vg, o € P, o(E).
E

We note that the degrees of freedom mentioned above determine « uniquely on the polygon

E, (see [27]). Therefore the dimension of the local space is given by the formula,

p(p—1)

dimVE := pNp + 5

where Ny is the number of vertices in polygon E.

Figure 1.2: Degrees of freedom for £ = 1, 2, 3 (from left to right). We denote G; by green
circle, G5 by blue rectangle and the moments GG3 by red square.

Now let us define the global virtual element space V" by,
VP={ue H3(Q) st.up € Vg VE € Tp}. (1.3.5)

Note that the polynomial space P,(E) is a subspace of the local VEM space Vj. The
core principles of VEM are elaborately discussed in [26]. We remark that the projection
operators H;Y and Hg defined on the Sobolev space H'(E) are computable on the VEM
space V', and not on the general spaces H'(E) ( refer [27] ).

1.3.1 Role of the operators H]Y and Hg

The VEM space contains the polynomial space and a set of non-polynomial functions

that are solution of certain partial differential equation. The explicit definition of the non-
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polynomial functions are not known and are never required for the computation purposes.
We demonstrate the role of the operators HIY and Hg in the discrete formulation in guaran-
teeing the VEM computablity of the inner products in the scheme. By VEM computablity
we mean, the term is evaluated just using the degrees of freedom and the polynomial com-
ponents of the functions.

For illustration, we discuss two variety of the approximation of the gradient inner prod-
uct or the stiffness term a(u,v) := (Vu, Vv)q.

Type I : Using only ITY

For a function uy, € V2, we split u;, into its polynomial and non-polynomial counter-

part, using the polynomial projection operators HZ as follows :
Up = ngh + up — quh.
Therefore, using the property (1.3.1), we have

alun, vn)g = (VI up, VIL vy) + (Vuy — VI uy, VI vy)
"—(VHZU}L, Vvh - VHZU}L) + (VU}L — VHquh, V’Uh - VHth)
= (VI up, VIL o) 4+ (Vuy, — VIL up, Vo, — VIL vp).

For each E € Ty, the discrete bilinear form a(-,-) : V£ x VE — R is defined as follows :
Yuy, v, € V;DE ,

o (un, vp) = a® (ngh, HZU;L) v sf((l — 11 Yy, (1 — Hj)vh), (1.3.6)

where SF(- ) is a symmetric positive definite bilinear form which ensures stability of

discrete bilinear form af (+,-), that is, there exists constants 0 < p, < u*, independent of

hg, such that,
t @ (up, up) g < SE(up, up) < p* a” (up, up) Yy, € ker(HIY).

Finally, the global bilinear form ay(-,-) : V}’ x VP — R that approximates the stiffness
term a(-, -) is defined such that

ap(up,vp) = Z ay (up, vp) ¥ up, v, € V7. (1.3.7)
KeTy

Type I1 : Using IT)_, and ITY




We split Vuy, := II)_, Vuy, + Vu, — IT)_, V. Then we have using (1.3.1) and (1.3.2),

a(un, vn)p = (T)_Vuy, IL_ V) + (Vu, — I Vauy, IL_ Vo)
(II)_, Vuy, Vo, — II)_ Vo) + (Vuy, — IV, Vo, — IL_ Vo)
= (II)_,Vuy, IL_, V) + (Vu, — II)_ Vg, Vo, — II)_ Vuy,)
= (IL)_,Vuy, IL_, V) + (Vuy, — VI uy, Vo, — VI vy,).

Similarly, for each E € Ty, the discrete bilinear form a/ (-, -) : VE x VE — R is defined as
follows : V uy,, vy, € V.7,

G (up, vp) == (Hg_lvuh, Hg_lvuh) + 88 ((1 — 11 Yup, (I — Hj)vh), (13.8)

where SE(- ) is a symmetric positive definite bilinear form which ensures stability of
discrete bilinear form a(-,-). Finally, the global bilinear form ay(-,-) : VP x VP - R

that approximates the stiffness term a(-, -) is defined such that

?ih(uh, Uh) = Z 55(%, Uh) W Up, Vp € V}f (139)
KeTy

Among ay(-,-) and a(-, -) the choice of the discrete bilinear form to be considered for
approximating a(-, -) is problem dependent. Through deep analysis, we can determine the
suitable discrete form that does not affect the rate of convergence (refer [28]).

A detailed procedure for the computation of the operators ngh and ngh is given in
[29] and the estimation of H271Vuh 1s discussed in [30].

1.4 Motivation

The convection-diffusion-reaction equation governing many practical situations has a
complex domain under consideration, for example, a fractured networks such as in under-
ground water channels or a domain with internal substructures as in cellular biology. For
complicated domains, use of polygonal elements for discretisation is more desirable. Both
the Polygonal Finite Element Method (PFEM) and the virtual element method can accom-
modate elements with arbitrary shapes and sizes, however, one distinct feature of the VEM
when compared to the PFEM is that the later requires an explicit form of the basis functions
to compute the bilinear and the linear forms. The basis functions over arbitrary polytopes

are rational polynomials, and thus computation requires higher order numerical quadrature
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rules. Whilst in case of the VEM, no such explicit form of the basis functions is required
and moreover, higher order elements even in higher dimensions can easily be constructed.
Therefore virtual element method is highly suitable for numerically solving problems en-
tailing complex domains. Most often in transport problems, the convection part is the most
dominating. Under these circumstances, stabilization of the virtual element method is im-
perative. For linear convection-diffusion equation, the streamline upwind Petrov-Galerkin
stabilization of VEM was analysed and a priori estimate with optimal order of convergence
was derived in [31]. Our main objective is to conduct theoretical and numerical study of
residual based stabilization of the virtual element method for approximating the nonlinear

convection-diffusion-reaction problems.

1.5 Notations and Preliminaries

Let us consider a bounded domain (2 subset of R?. We state the necessary notations and

mathematical tools used in the thesis.

Definition 1.1. For p € N, a measurable function f defined on 2 is called p —integrable

if it satisfies,
1
£ e = ([ 1r@)Pde)” < o
Q

Definition 1.2. The L?(2) space is the collection of all p — integrable functions defined
on 2. That is,

LP(Q) = {f QSR ( £l < oo}.
For p = oo, the space L>(£2) consists of all essentially bounded functions on €2 with the
norm,

[ flloe = ess 2lelg|f(x)| = inf sup f(x).

wC,|w|=0 Q\w

Definition 1.3. We define the following inner product on the L*(Q) :
()2 =1+ 20

Let us denote by m = (my, mo, ..., my), a d-tuple multi-index of non-negative integers

m; with its order m defined by m = Y% m,. Then the m' order partial derivative is

i=1
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defined as
am

mi mq *
o dx)

D™ =

Definition 1.4. (Sobolev space of order (s, p) over (2)

For a non-negative integer s and 1 < p < oo, the space is W*?((2) is defined as
WeP(Q) :={u € LP(Q) : D™u € LP(Q),m < s},

equipped with the norm

m p m
lullep = (32 1D™uley) " Y1 <p <00l = sup Dl ey = oo

m<S mss

and the semi-norm is defined as

p
|U|S7p = (Z ||DmU||Lp(Q > V 1 S p < 00, |u|s,oo = SUP||D“‘U||L°°(Q) p = 00.

m=s

For p = 2, the Sobolev space WW*2(2) is an inner product space and is usually denoted
as H*(Q). Let us denote H°(Q2) := L*(€2). To impose clarity on the domain, we use the

following notations for the norm and semi-norm defined on H*(€2). That is,
I llse o=l lls2 and [-fs0 = [-]s2.

Definition 1.5. The H} () is the closure of C5°(€2) in H'(€2) and the dual of H}(Q) is
denoted by H1(Q).

Proposition 1.1. (Young’s inequality)

ca? b N n
ab<7—|—2— Va,b € RTU{0}, e RT.
€

Proposition 1.2. (Holder’s inequality for sums)
1 1
Let —+ — = 1withp, q > 1. For ay,...,a,, b, ..., b, be real numbers. Then
q

p
i=1

D=

>l < (S
i=1 i=1
Proposition 1.3. (Holder’s inequality for integrals)
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1 1
Let —+ = = 1withp, q> 1. For f € L*(Q) and g € L4(Q). Then fg € L'(Q) and
p g

1fgllzre) < [1fllzec l9llze)-

When p=q=2, this inequality is known as Cauchy-Schwarz inequality.

Proposition 1.4. (Generalised Holder’s inequality)
1 no1

Let r,p1,p2, ..., pn € RT U {00} with — =0, satisfy >, — = r. Then for any collection
00 —1 D

=1 M

of fls, i =1,...,nwith f; € LPi(Q2), we have the relation :

T filer < TT il
i=1 i=1

1.6 Outline of the thesis

In chapter 2, we study the SUPG stabilization of VEM for a semilinear convection-
diffusion-reaction equation. We propose a computable VEM scheme, discuss the well-
posedness and optimal order convergence estimate concerning the energy norm. Chap-
ter 3 deals with the discussion of the shock-capturing stabilization of VEM. First, we
propose a computable discrete scheme for the linear convection-diffusion-reaction equa-
tion and show the existence of a numerical solution. Then we investigate the efficiency
of the shock-capturing method through numerical simulations. Subsequently, we devise
a shock-capturing stabilized VEM formulation for the semilinear convection-diffusion-
reaction equation. We prove the existence of a discrete solution. An optimal order conver-
gence estimate with respect to the energy norm is derived, and numerical simulations are
presented to illustrate the efficiency of the added stabilizer. Chapter 4 treats the SUPG sta-
bilization of VEM for the quasilinear convection-diffusion-reaction equation. We discuss
the well-posedness of the discrete scheme by approximation of branches of nonsingular
solution. We derive an optimal convergence estimate with respect to the energy norm. In
simulations, we discuss using a two-grid method to reduce the CPU time taken to solve
the discrete system. In Chapter 5, We study the VEM for the nonlocal coupled reaction-
diffusion equation. We discuss the well-posedness of the fully discrete scheme and derive
an optimal order convergence estimate with respect to the L? norm and H' seminorm.
Also, to restore the sparsity structure of Newton’s Jacobian, we suggest a remedy. Numer-
ical experiments validating the theoretical estimates are presented. In the final chapter, we

discuss the future scope for the topics discussed in chapters 2-5.
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Chapter 2

Virtual element method for the semilin-
ear convection-diffusion-reaction equation

on polygonal meshes

Nonlinear convection-diffusion-reaction equation arises in all branches of science and
engineering. Some important practical models include combustion of subsurface reactive
transport processes, movement of fluids in porous solids [32], drift-diffusion equations
of semiconductor device modelling, heat transfer problems [33] and heat-induced mois-
ture transport in porous media [34]. The convection-diffusion equation is a prototype of
the nonlinear Navier-Stokes equation of fluid flows. An explicit analytical solution is not
at one’s disposal for the model partial differential equations of these types with sophisti-
cated boundary conditions. Hence, researchers are interested in obtaining an efficient ap-
proximate solution for the convection-diffusion equations. We know that wild oscillations
appear in the numerical solution obtained from the standard discretisation techniques for
the singularly perturbed problems. The spurious oscillations occur in the neighbourhood
of layers of the solution. It is still challenging to devise and analyse a discrete formula-
tion that solves with optimal accuracy when the problem is either convection-dominated
or reaction-dominated. To overcome these situations several stabilization techniques have
been proposed in the literature, for example, Streamline upwind Petrov-Galerkin (SUPG)
[35, 36], local projection stabilization [37, 38], edge stabilization [39].

In many industrial and practical situations, the concerned domains are of complex ge-
ometry. For such instances, meshing using polygonal elements is highly advantageous.
Few numerical analysis involving arbitrary polygonal or polyhedral meshes can be found
in [4],[40],[41] and [42]. We can note that for these existing techniques, the method does

not allow non-convex elements and degenerating elements ( i.e. hanging node-like struc-
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tures ) in the domain discretisation. One requires performing numerical integration using
the quadrature formulas for evaluating the associated bilinear forms. The requirement of
knowing explicit canonical basis functions over polygonal elements makes the implemen-
tation of higher-order methods more inconvenient.

The virtual element method is naturally adapted to general polygonal or polyhedral
meshes. A significant feature of VEM is that it can handle meshes without an explicit
definition of shape functions. The VEM space with its associated degrees of freedom is
defined such that to obtain polynomial accurate and stable numerical solutions; we only
require the information about polynomial subspaces of local virtual element space. Suitable
polynomial projection operators are introduced into the discrete formulation to ensure that
computations are carried out only using the VEM degrees of freedom. In [29], it is noted
for diffusion or diffusion-reaction problems, VEM analysis does not involve numerical
quadrature formulas. Moreover, VEM allows the use of arbitrary polygonal meshes with
hanging nodes; that is, the angle between two edges can be 180°. This characteristic feature
of VEM makes it more suitable for approximating problems involving the generation of
conforming adaptive meshes, for example, in fluid dynamics such as underground flow
problems [25]. In most flow/transport problems, the convection phenomenon is often more
dominating than the diffusion counterpart. Therefore, stabilization of the virtual element
method is of primary interest. In literature, for linear convection-diffusion equations, SUPG
stabilization of conforming and non-conforming virtual element method [31], [43]; local
projection stabilization of VEM [44] and VEM stabilization using link-cutting conditions
[45] are discussed. This chapter proposes and analyses virtual element discretisation of the

nonlinear convection-diffusion-reaction equation with SUPG stabilization.

2.1 Governing equation and weak formulation

Let us consider the following nonlinear convection-diffusion-reaction problem

ou—V-(KVu)+b-Vu+g(u)=f in Q,
u=0 on 0f, (2.1.1)

on a bounded domain Q C R? with the following assumptions:

(A.la) constant o > 0, K € L*>(Q) satisfying K (z) > Ky > 0 a.e in €,
(A.1b) b € (W1°°(Q))? with (V - b)(z) = 0 a.e in £,

(A.1c) g € CH(R) with g(0) =0 and ¢'(z) > go > 0 forz > 0 and f € L*(Q).
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For the purpose of practical applications such as concentration of pollutants, we con-
sider the solution v to be non-negative and bounded above i.e., uy < u < u; with ug > 0.
From (A.1c) we note that ¢’ is bounded on compact intervals of «. This implies ¢ is Lips-
chitz continuous with constant L. The standard variational formulation of the continuous
problem (2.1.1) is given by : Find v € H}(2) such that

A(u,v) = (f,v)q Vv € Hy(Q), (2.1.2)

where, A(u,v) = (ou,v)q + (K Vu,Vo)g + (b - Vu,v)q + (9(u),v)q . We formulate
(2.1.2) as an operator equation Au = f, where the operator A : H}(Q) — H1(Q)
satisfies (Au,v)g = A(u,v) Yu,v € H}(Q). Using the assumptions (A.la-c), we obtain
Vu,v € Hj(S),

(A(u) — A(v), (u—v))o > min{o + go; Ko} [u— [0
[Au = Avl[g-10) < max{(o + L); ([[bllecg + [[Kllc0)} lu = vll10-

Thus the operator A is strongly monotone and Lipschitz continuous which implies that the

operator equation has a unique solution [46].

2.2 VEM-SUPG stabilization

When the problem is singularly perturbed, the standard numerical methods approxi-
mating (2.1.2) generate solutions affected with spurious oscillations. To overcome this
situation, a stabilization of VEM is required. In this section we formulate the Stream-
line upwind Petrov-Galerkin (SUPQG) stabilization for the VEM discretization. In VEM, as
mentioned earlier, the functions in V}” are not known explicitly in the interior of elements
E € T,. Hence to guarantee the computablity of the virtual element formulation, we use
the projection operators Hg, HZ and Hg_l in the approximation of (2.1.2). The introduc-
tion of projection operators alters the skew-symmetric property of the term (b - Vu, v)q.

Therefore, using the assumption (A.1b), we consider an equivalant form as follows :
1 1
(b-Vu,v)q = E(b -Vu, v)g — §(b Vv, u)q. (2.2.1)

The modification (2.2.1) helps to preserve the skew-symmetric property in VEM and more-
over, this helps us to prove the well-posedness of the virtual element scheme irrespective

of mesh diameter A (unlike in [31] where one requires sufficiently small h).
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The terms in the VEM are defined as follows, one by one.

a(uh, Uh) = (K Hg&Vuh, Hf,fleh)Q -+ Z TE (b . H271Vuh, b- H271V'Uh)E
EeTy,
+ > (Kp+7eb3) SE((1—T0Y) up, (1 =11 ) vy), (2.2.2)
E€Ty,
blup,vn) = (o Mup, Wvy), + Y oSy (1 = I)up, (I — )wy), (2.2.3)
EeTy,
1
c(up,vp) = 5 [(b . H2_1Vuh, Hgvh)g - (ngh, b - Hg_1Vvh)Q}
+ > 7 (0 1uy, — V- KII)_ Vuy, b T, Vy) (2.2.4)
EeTy,
d(up,v) = (§un), Wo) gy + > g0y (I = T)yuy, (I —TI))wy,)
E€Ty,
+ 3 7 (M), b-TI) Vy,) (2.2.5)
EeTy,
Fog(vn) = (f.1000)+ > e (f.b-TI) Vo)., (2.2.6)
E€Ty,

where Kg := sup K (z), bg := sup ||b(z)||o g2 and let K}, := in]f;K(x). Then we define,
zel Te

zel

Aysg(un, vp) = alup, vy) + b(up, vy) + c(un, vy) + d(up, vy). 2.2.7)

We state the VEM-SUPG discrete formulation as : Find u;, € V}¥ such that
Apsg(tn, v3) = Fosg(vn)  Vop, € VP (2.2.8)
Whenever ¢'(+) is not bounded above in R™ we use g(+) in place of ¢(-) defined as follows,

g(uo) + ¢ (up)(u —up) for u < uy.
g(u) = q g(u) for wy <u < u. (2.2.9)
g(ur) + ¢'(uy)(u —uy) for u > uy.

Note that S¥ and S denote the symmetric bilinear form defined on V4 x VE. Let there ex-
ists non-zero positive constants \,, A*, u, and p*, with A, < A\* and p, < p*, independent
of hg, such that,
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As (Vuh, Vuh)E < Sf(uh, uh) (V’Lbh, Vuh)E Yuy, € ker(HZ), (2.2.10)

<X
u*(uh,uh)E < Sf(uh,uh) < u*(uh,uh)E Yuy, € ker(Hg) (2.2.11)

We consider the following choice for computational purposes :

ndof ndof
SlE(Uh? "Uh) = Z dOfl(Uh) dOfi(’Uh) and SQE(U}L, Uh) = h2E Z dOfZ(’LLh) dOfi(Uh),
i=1 i=1
where dof;(uy,) denotes the ith degrees of freedom of w;, with ndof denoting the total de-
grees of freedom of £. Since the degrees of freedom scales like 1, suitable scaling coeffi-
cients are used for the stabilization terms S{ and S¥ respectively (see [13]). The stabiliza-

tion term that appears in (2.2.5) is useful in deriving the coercivity estimate.

2.3 Error estimates

In this section we derive the error estimates for the proposed VEM-SUPG discretiza-
tion. Our analysis will follow in similar lines to the finite element error analysis performed
in [47]. Considering the assumptions of g mentioned in section 2.1 and the definition of ¢
(see (2.2.9)) we note that §'(u) is bounded on the compact intervals of . This implies that

§g(+) is Lipschitz continuous with constant L.

2.3.1 Preliminary results

We prove the coercivity estimate followed by existence and uniqueness of the discrete
solution. The following polynomial inverse inequality is given in [48]. Let ¢ € P,.(E) with
r € NU{0}. Then

r+1)>
o,z < ot ; ) lgll-1,2, (2.3.1)
E
where c¢ is a positive constant independent of hg, r, and ||g|[-1,5 = ||ql/(u(y-- For

up, € VP, we know that Auy, € P,(E) YE € T,. Taking ¢ = Auy, in (2.3.1) and using the

estimate ||Auy||—1.g < |up|1 g given in [49], we get,

[Auplfo,z < finy P’ h;f [un 1,5 (2.3.2)
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where, f;,y > 0 is independent of uy,, hr and p. We introduce the following norm

2
lll® = 5> (IWE Vull s+ (0 + g0) [ulld 5 + 7 [D-Vulld ).
SIS

h% 1 o+ 9o
P Ke 0" L]

1
Lemma 2.1 (coercivity). Let 0 < 7p < Zmin { } be satisfied. Then,

Aysg(on,vn) 2 0||nll> Vo, € VP, (2.3.3)

where, § = min {}1, As, ,u*}.

Proof. We bound the terms of A,,(-, -) one by one. Considering the first term,

a(vn,vp) = (H\/Eﬂg_lvvhﬂ?),]; +7g|b - Hg—lvvhHg,E
EeTy

+ (K + 7b%) SE (I =11 vy, (I — 1Y Juy,) )
Using (2.2.10) and inequality ||(I — IL_,)Vuyllo.z < [V = IIY Jun|lo,e ([12]), we get,

alnn) = Y (VKT Vol + 7ellb - T, Vo3
E€Th

+ (Ki + 75b%) MV = T )un3 1)

2 (VR Vol e+ AIVE( =T )V
h

+7p|b - T V|2 + Aurl[b - (1 — Hg_l)whngﬂ) (2.3.4)

A%

Using the inequality (2.2.11), we obtain,

o) = 5 (VT Il s+ 0 SF (=)o, (7 ) )
€/n
> 5 ol +pe 3 ol = T)ulE g 235)
EeTy, EeTy,

Consider |¢(on, vs)| = ’0 + 5 (oW — V- KT Vo, b T, Vo) ’
E€T;, E
Applying triangle inequality and Cauchy-Schwarz inequality, we get,

cwnon) < % (oo IMulloplb- T Fopllos
EcTy,

+75lIV - KTI_ Follo gl - T, Vono.s ).
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1
Using 75 < —, we get, o [[[ISup[lo.r < \/_
g

5 HHOU}LHO g Similarly, using the inverse
1 th
inequality (2.3.2) and then using 75 < —

4ptus Ke’ ’

HV . KH]gflV?)hHo’E S

”\/_H vvhHO,E-

(2.3.6)
\/_

Thus, we obtain,

1
ool < 52 (Gvolmolosy/mlb- T Volos
€Th

4 IVRTE Vo o.o v/ lb - T Vunlo.z)
T,
= 5 {(valmolos) (2D 1 Vol
S
TE
+H(GIVEI Voulus) (LEIb- 1 Vols) }

2 2
. . . m° n
Using Young’s inequality for products, mn < — + —, we get

o E
cton o)l < T (GImule +

T 1
Ll 11, Voulf e + VR Tl
EET,,
Thus we get,
g T
o) = = 3 (SIenl s+ b - T, Vol
EET),
VR, VulR o). (23.7)
d(vn,vn) = (9(Iwn), Ivp) + > 9055 (I = I0)wp, (I — I1D)wy)
EET,,
+ > 78 (9(ws), b - IL,_ 1 Vuy) (2.3.8)
E€T,,
Considering the first term of (2.3.8), we note
(ﬁ(Hgvh),Hgvh) Z 1T vn 15 & (2.3.9)
E€Ty,

v = (9(x) = 9(0) x > [7s5(s)ds > go [y sds =
== x% since §(0) = 0and §’ > go > 0 (see assumptions provided in section 2.1). Similarly,

which can be derived from g(x)
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for the second term of (2.3.8), using the inequality (2.2.11), we get,

5 g0 SE (1= T)un, (I = 1Q)vs) > e 3 goll (1= )onf3 . (23.10)
EeTy, EeTy,

For the last term of (2.3.8), since §(0) = 0,

=] > 75 (§(Ivs), b - Hzo)flvvh)E‘ - ‘ > 7 (§(ITn) = §(0),b - TL_ Vo) ‘
EcTy E€Ty
Applying Cauchy-Schwarz inequality and the Lipschitz continuity of §(-) with Lipschitz

constant L,4, we have,

1< Y 7L loelbIL_ Vurllor < 3 TELg |04 ]l0,5v/TE | b-IL_; Vg lo.£-
EE€Ty, EE€Ty,

+ 9o
AL2

. o
Using 75 <

and Young’s inequality for products, we get,

1 .. .
1< 1 3 ((a + go) ||H2vh\|3’E +71e|b- ngvvhH(Q),E) . This implies,
EET,

N 1
> 7 (9(n), b T, V), = =5 X ({0 + g0) ITul3
EeTy, 4Ee7'h

4 b Hg_1Vvh||aE> 2.3.11)
Substituting (2.3.9), (2.3.10) and (2.3.11) into (2.3.8) we get,

90
d(on,vn) 2 5 2 ITvnll3 e + 1 22 goll(I = T)wnllf g
E€T;, EcT;,

1
_ZLEZ;' (0 + 90) ITvnlf s + 7 b - T Vo[ ) - (2.3.12)
S

Adding (2.3.4), (2.3.5), (2.3.7) and (2.3.12) the desired coercivity result is obtained. O

Lemma 2.2. Given u € H}(Q) with (V - (KVu))|g € L*(E). Then for all v, € V' the
following result holds

a(u,vp) + b(u, vg) + c(u,vy) < Cr Ng(w) |||vn]l] (2.3.13)

where, C} is a positive constant independent of E, h and p and
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Kg + TEbE2> A \/TEbE>

bg
K}, +Ee7’h<‘/KV >+gle@;§<1/[(v

#ot )+ (TPl + (5 min {2 Yl e) 2319

Ni(u) :== [(1 + ") max (

EcTh

Proof. To bound the terms a(-,-),b(-,-), c(-, -), defined in (2.2.2), (2.2.3), (2.2.4), the fol-
lowing inequalities (2.3.15)-(2.3.18) discussed in [12] will be used.

For any F € Ty,

||Hg_1Vvh||07E S ||Vvh||07E. (2315) HV(I - HZ)UhHO,E S ||Vvh||0,E- (2317)
||Hgvh||0,E < lvnllo.z- 23.16) ||(I - Hg)vhnw < lvnllo.e- (2.3.18)

Applying (2.2.10), Cauchy-Schwarz inequality, (2.3.15), (2.3.17), Holder’s inequality, and

from the definition of ||-|| over a(u, vy,), we get,

alu,vp) <Y Kgl[T)_ Vullo glITT)_ Vuallo.z + 7eb% [T Vullo.£lITT)_ Voallos
BT
+ > (Kg+71eb%) M|V = 1E)ullos V(I —TIp)vnllo.s

EcTy,

TEb?
< 2 (Kv 1V EVullo,z ||[VEVuoe + E E||V KVullog| v VUhHOE)
EcTy,
Kg + 1pb?
+ ¥ (PN IVEVullo.s IVE Tunlo.x)
E€T E

% KE+TEb2E
< e 7}
< (W) (FEEE) S VR Valos [VEVoos

% KE+TEb2E
< —_— . .
< (X max (S5l (23.19)

For the term b(u, vy,), using (2.2.11), Cauchy-Schwarz inequality, (2.3.16), (2.3.18) and

Holder’s inequality, we get,

blu,vn) < 30 0<||H2UHO,E 1T wnllo.z + w2 lu — T ullo,r|lvn — HgvhHo,E>
BT,

< () 2 o) (X olllie)’
EeTy, EeTy,
< (1 )l ol (2.3.20)
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Applying triangle inequality and Cauchy-Schwarz inequality on c(u, vy,), we get,

1
c(u,vp) < 5 > |b-IL) 1VU||0E||HOUh||0E+§ Z IToullo.z [[b - IL)_ Vg o,z

E€Th

+ 5 7o IMulor + | —v-Kng_lvuuoﬂ)ub-Hp_lwhHo,E.
E€Th

= I+ +II+1IV (2.3.21)

Using (2.3.15), (2.3.16), Holder’s inequality and the definition of ||-|||, we get,

IgaE

bg
EETy ‘/K\E/' \/Kv

Next, the second term of (2.3.21) is bounded in two different ways. Using (2.3.15), (2.3.16),

we have,

IVEVulos anw < max ( ) Jlall lonll2:3.22)

< > flullos

Fmee( i

Alternatively, we again bound II as follows,

2 %
)!W— whuom(; ( E) HuHOE) lonll. 2.3.23)

b
n< Y —Huuwﬁ\f_vu\/?whuw (by (2.3.15), (2.3.16))

E€T, V
1 b 1
< (2 s (2 (2 ) IVEV i ;) (by Holder'sinequality)
EeT, TE ’ EET;,
1 2 (0 + go)bE\\ 2 : o+ o
< a2 ) ( (—E)) ( < }(2324
< (2 ptts)” (me (P oy ™)) el (wsing e < = )

Thus, combining the bounds in (2.3.23), (2.3.24), we obtain,

2

< (£ min {2 22 H )l 23.25)

E€Th

b3\ \ 4
where, ] = max {1 (max ((0—2#) > }, is a constant independent of h, and F.
EET, LKy,

1
Using the assumption 75 < o (2.3.15) and (2.3.16), we get,
ag

VTE \/TEbE
< 3 VolMullg 5= [b-T_Vuloeg < > Vollullos — ||V E Voo,
EcTy, 2 E€T, AV KE
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Using Holder’s inequality and the definition of |||, we obtain,

/TED
m < (maX L E>|y| I lIlewll- (2.3.26)
EcTn /K

Finally we bound the term IV of (2.3.21) as follows,

VT .
IV < 3 VET VullosYg™ belll)  Venlors  (using 2.3.6)
E€T,

\/ b )
< > ETE £ H\/_VUHOEH\/_VUhHOE (using (2.3.15))

vV KET, EbE . .. . .
< . ’ Wj4.3.
< (IbpeaT BT llwll lonll|-  (using Holder’s inequality and ||-[[2.3.27)

Substituting (2.3.22), (2.3.25), (2.3.26) and (2.3.27) into (2.3.21), we obtain,

cCwen) < [ (D2 e (V22 4 (VEETEPE) |

E€T, KY. VK 2K},
1 b 3
(X min{— Kv}nuuaE) Ci el (23.28)
E€T,

Now, adding (2.3.19), (2.3.20) and (2.3.28), and letting C; = max(1, C) we get the

desired result. L]

The following proposition (see [S0]) is useful for showing the existence and uniqueness
of the discrete solution for the problem (2.2.8).

Proposition 2.1. Let H be a finite dimensional Hilbert space with inner product (-, -) g and

norm || - ||g. Let P : H — H be a strongly monotone and Lipschitz continuous operator.
Then P(u) = f has a unique solution for all f € H.

Remark 2.1. Let us define the inner product (-, -) oy on VI by (wp, vp)pr = > (Vwp, Vo) g
E€Th
Vwy, v, € ViF, and denote, the induced norm by || - || 7. We note that V;” with inner product

(-,-) is a finite dimensional Hilbert space. The norms ||-|| and || - || »s are equivalent on
VP, That is, there exists k; > 0 and ko > 0, such that,

Eiloallae < lonll < kallonllae - Yon € V3P (2.3.29)
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Theorem 2.1 (Well-posedness). Let the assumptions on the problem (2.1.1) be satisfied.
Then the VEM-SUPG scheme (2.2.8) has a unique solution u;, € V,f’.

Proof. In order to use Proposition 2.1, we first rewrite (2.2.8) in the operator form on V}”
with inner product (-, -) »; and norm || - || 5.

For each y, € V", let us define the operator 7,, : Vi’ — Rby T, (z1) = Aysy(yn, 21). Note
that for each y;, € V', the corresponding T, is a bounded linear functional on V;”. Now,
using Riesz representation theorem, there exists a unique g, € V)’ such that T}, (z;,) =
(qn, 20y Vzn € VP

The correspondence y, — ¢y, defines a mapping M : V;’ — V' such that

<M(yh), Zh>M = Avsg<yh; Zh) Vzh € V}? (2330)
Consider F,, in (2.2.6) for a fixed f € L*({2). We have
|Fosg(z2n)| < (Cp + maxbp7e) || flloallznlar Vo € 78
h

where C,, denotes the Poincare constant. Thus for fixed f € L?(f2), F,s, is a bounded linear
operator on V. Again by Riesz representation theorem there exists a unique f,;, € V}"
such that

FUSQ(Zh) = <fv597 Zh>M Vzy € V}f (2.3.31)

Hence using (2.3.30) and (2.3.31), we note that the scheme (2.2.8) is equivalent to the

following operator form : Find u;, € V}” such that
M (up) = fosg- (2.3.32)

Now we show that M is strongly monotone. Consider vy, wy, € V¥, let ¢ := v, — w;, and
My = M(vy) — M(wp,) . We estimate (M, ¢)p = (M (vy) — M(wp,), vy, — wp)p. We
have, (M, ¢)p = Avsg(Vn, v — wp) — Aysg(Wh, vy —wp) = al¢, d) +b(¢, ) + (¢, ) +
d(vp, ¢) — d(wp, ¢). Therefore, we have

(My, o)ur = a(¢,0) +b(¢,0) +c(¢,0) + > (9(Ivn) — §(Iwy), Ie) .

EET;
+ > 90 ST (I —1)e, (I —115)p) + > TE(@(Hgvh) — (I wy), b - Hg_lv¢)
E€Th EeThy E
=a(¢,¢) +b(¢, ) +c(¢,9) + 1+ 11+ 111 (2.3.33)
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Term I is bounded by using mean value theorem on §(-) and assumption (Al.c). Using
(2.2.11) we bound II. Thus we obtain,

122 5 |5 . (2334)
EcTy
> gope > ||(I— H2)¢H%,E- (2.3.35)
EeTh

Applying Cauchy-Schwarz inequality and the Lipschitz continuity of §(-) we have,

| < 3 7 Ly [Telloslb - I, Vollok

E€eT;,
< X VL MéllosyTe b - TL_ Vo s
EeT,
Similar to (2.3.11), we get,
1
M2 =7 5 (0 90) Imollp+7e b1, Vol55) . 23.36)
EcTy

Letting v, = ¢ in (2.3.4), (2.3.5) and (2.3.7), we obtain bounds for a(¢, ¢), b(¢, ¢) and
c(¢, ¢) respectively. Therefore substituting (2.3.4), (2.3.5), (2.3.7) and (2.3.34)-(2.3.36)
into (2.3.33), and using Lemma 2.1 and (2.3.29), we get for any vy, w;, € V7,

<M(Uh) — M(wh), Up — wh>M Z 0 |||Uh - wh|||2 Z Qkfﬂvh - wh”?\/[ (2337)
Next we prove Lipschitz continuity of M. Consider,

(Mg, Mg)nr = (M(vn), Mg)rr — (M (wp), Mg) s = Avsg(vn, My) — Apsg(wn, My)
CL(¢7 M¢) + b(¢a M¢> + C(Qb, M¢) + Z (Q(Hgvh) - Q(ngh)7 H2M¢)E

EeTh

+ 2 0058 (1= TR)o, (I = T)My)

+ 5 7 (9(190n) = §(1I5wy), b TIS_, VM, )
ECT;, E

= a(¢p, My) + b(¢p, My) + c(p, My) + 1+ 11+ IIL (2.3.38)

In (2.3.14), bounding the L? norm in N,(-) by [|-||| and using (2.3.29) we get,

Ny(¢) < Cnsl|o]l e,
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where Cys > 0 is dependent on K, bg, 0, 7, 1*, \* and k.

Hence Lemma 2.2 and (2.3.29) implies,

a(p, My) + b(¢p, My) + c(¢, My) < Cllolla|| Mg ar, (2.3.39)
where C = C1Cysks.

Next, using Cauchy-Schwarz inequality, Lipschitz continuity of ¢(-), (2.3.16), Holder’s
inequality, and then, Poincaré inequality, we get,

I < > Lyltpollos T Myllo.s
E€Ty

< L,( 5 W0lEs) " (Seen IMalR )

EcTy

1
2

< Ly C3 |9l ae | Myllas- (2.3.40)

Using (2.2.11), (2.3.18), Holder’s inequality, and then, Poincaré inequality, we get,

10 < go i Cp || dllar | Mg | ar- (2.3.41)
. o+ go . .. .. )
Using 7p < 1 , and estimating in a similar way, we obtain,
g
br(oc+g
m o< 5 PO a
EET, g
< (maxbe) T 00, (3 Vol) (5 IVMIR )’
= \EeT, 4Lg = 0,E = ?ll0,E
(0‘ + go)
< b C M. ) 2342
< (gle?% ) i, PPl arl| M| ar ( )

Substituting the equations (2.3.39)-(2.3.42) into (2.3.38), implies that there exists constant
C > 0, such that || My]|3, < C||@|las]| My as- That is,

HM(Uh) — M(wh)HM < Cth — whHM vyh,wh € V]f (2343)

Thus (2.3.37) and (2.3.43) imply that M is a strongly monotone and Lipschitz continuous
operator on V" respectively. Now using Proposition 2.1 (thanks to Remark 2.1), we get that
(2.3.32) has a unique solution. This implies that the scheme (2.2.8) has a unique solution.

O
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2.3.2 Convergence results

In this section we will prove the rate of convergence results first by deriving a lemma
on the ||u — uy|| with respect to the continuity coefficient Ny, then we use the lemma to

prove a theorem that estimates the rate of convergence.

Lemma 2.3. Let the stabilization parameter Ty satisfies

0 { h% ‘1'U+go}7

0< < — mi —
=056 M g, Ky o) L2

where 0 is as defined in Lemma 2.1, Further let u € H}(Q) satisfy (2.1.1) and the
assumption (V - (KVu))|g € L*(E) for all E € T;, and if o is chosen such that, (o +
90)0 > 12(L, + gop*), then for sufficiently small h,

llu —unl| <C inf Ny(u— ), (2.3.44)
vheV,f’

where C'\ depends, in particular, on o, go, 1*, 0 and L.

Proof. Let u, € V)P be the discrete solution satisfying the VEM discretization (2.2.8). For
arbitrary v, € VP, let ¢ :=u —vp, ¢ :=up —vpand e := u — up, = ¢ — 1.

First, we find a bound for |||, in terms of |||e]|| and |||¢|||. Note that, both w and u,, satisfy
(2.2.8). Therefore, Ay sy (u, wy) — Aysg(un, wy) =0 Vw, € VP, This implies,

a(e, wy) + b(e,wy) + cle,wp) + d(u, wp) — d(up, w,) =0 Yw, € VP (2.3.45)

Hence for 1) € V', using Lemma 2.1 and (2.3.45), we get,

N

Ol < Ausg(t,9) = ald — e, 1) +b(¢ — e, ¥) + c(¢ — e,9) + d(, )

< a(6,1) +b(6,1) + (6, ) = (ale,¥) + ble,v) + ele, ) + d(v, )
< a0, ) +b(6,1) + (6, ) + (d(u,¥) = d(un, ) ) +d(, )
< a(0,0) +06.9) + (9. 9) + T oSE(T e, (1= T1) )
+ 5 (9) = §(0T5u), T50)
+ 3 e (30w — (W) b - TO_, V) , 4+, )
< a(d, ) 4 b, V) + c(d, ) + 1+ L+ 1ML + d(¢), ). (2.3.46)
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2 0
Using Lemma 2.2 and inequality %\/571 < m + an? (choosing o = 5), we obtain,
« o

0
a(6,9) +b(6,0) + e(6,9) < CN@ Il < SCHNL) + Sl 2347

Applying (2.2.11), using (2.3.18), Holder’s inequality and then Young’s inequality for prod-

ucts, we obtain,

I < > g llelloellvlor

EcTy,
go p* 2 2
< (2 @+olu—ulis)’| X @+olviE)
o0+ go \ EcT,, EeTh
o 1" o *
< — U —Uu
< o =l 5
o 1 2 Gop 2
< u — upll|” + . 2.3.48
< Sl wl J+%mwu (2.3.48)

Using Lipschitz continuity of g, (2.3.16), Holder’s inequality, then Young’s inequality

for products, we get,

I < > Lyllu—uploeltlor

E€T,
L > 2
< (X etrollu-ulBe) (X @+olvlbe)
o0+ go \ EcTy, E€Th
L
< — Up 7 (0
=l
L, L 9
Q——— |y Ry [ | ]I (2.3.49)
e =l + syl
Again using Cauchy-Schwarz inequality, Lipschitz continuity of g, (2.3.15), and the
0 hZ
assumption 75 < 956 m we have,

I < > Telgllu— uploe/TEDE| VY ok

EETy,
bEhE
< > VTELgllu — unlloe 556 g I |V¢||0,E
EETy,
< > Lyl — MMHWVM (sp> 1 2 < )
= 256Eeh : M i K ve \BPES R SR

28



Linw K ) 0 o+ go
, and < —
by and using 75 < %6 L2

and then using Young’s inequality for products, we obtain,

For hy < , Holder’s inequality, the definition of |||-|||,

1
0
o< (o4 Zuu—uhuw) ol

EcTy

6
< — — < — — — 2.3.
< el =l el < el — wnll® + ol 2.3.50)

Similar to the inequalities (2.3.48) - (2.3.50), repectively, we obtain,

d(i, ) < 90“ Sl +

+ ol 2350)

Now, substituting the results obtained in equations (2.3.47)-(2.3.51), into (2.3.46), combin-

ing similar terms and simplifying their coefficients, we get,

2 2 2 Ly + gop” 0 . 2
ol < s {Gerononr + (B0 s D - wiP, @as)

128(0 + go)
63(0 + g0)8 — 128(2L, + 2gop*)
Substituting (2.3.52) in the inequality ||u — uz||> < 2||o[I* + 2[[]|* we get,

where, 8] = > 0 (using (0 + go)0 > 12(L, + gop™*)).

2 L, + gop* 0 2
_ 2 - 2 22 2 g _ '
= unll® < 20011+ 260{ GORN))* + (FL 05 + 5l — i}

Rearranging and simplifying the coefficients, we get,

4
llu = unll® < 2B:0101° + 81825 CF(N(0))?, (2353)

63(0 + g0)8 — 128(2L, + 2gop*)

62(0 + go)0 — 128(4L, + 4gop*)
Simplifying the right-hand side (2.3.53) we have,

where, 3 =

> 0 (since (0 + go)0 > 12(L, + gop*)).

llu—wll® < RSBGCHN()

where, R := max(1,1/J) and J := (4/0) 3,C?C?. Thus, for v, € VP, ||u — us|?
~ ~ 8
C(Ns(u—wy))?, where, C' = R§5162C?. This implies the required assertion (2.3.44). [

Hereafter, C' denotes a generic positive constant independent of hg, p and h, that has
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different meaning at different occurrences. In some instances, ' may depend on the coef-
ficients of problem (2.1.1).
The following proposition is proved in Lemma 4.2 in [51].

Proposition 2.2. Consider £ € Ty, satisfying the assumptions (i),(ii) given in section 1.3
and let u € H*"Y(E) . Then for each p € N there exists a projection operator I¥ that
maps u onto the polynomial space P,(E) such that 0 <[ < k+ 1, yp = min(p, k),

p+1-1

lu— IPul, p < C#HUHHLE. (2.3.54)

Let ﬁ denote the triangulation refinement of 7, : for each E € 7Ty, the triangles are
formed by joining the vertices of E to the centre of the corresponding disc 1., in assumption
(i) of the mesh regularity condition stated in section 1.3. Denote by P} (7N?L) the space of
continuous piecewise polynomials of degree p € N over Ty For T € T, we denote T, to

be either 7" itself or union of 7" and its immediate neighbours.

Proposition 2.3. For every u € H*'(T) there exists Tu € P’ (Tn), (see hypothesis (4.6)
in [52]) such that, 1 = min(p, k),
pt1

h
' — Zullo.r + ?T lu—Zulyr < C’pl{ﬁHquﬂj. (2.3.55)

Now, we prove a lemma to obtain an estimate involving h and p, for the virtual element

interpolation term, following the procedure given in [53].

Lemma 2.4. Let ¥ € T, be a convex polygon satisfying the assumptions (i),(ii) given in
section 1.3, Then, for v € H}(Q) with ulp € H¥'(E), k € N, there exists uy € V!
satisfying the following,

hE ,lé—i—l
|u —urllo.r + s lu —url1p < CWHUHkJrl,Ea (2.3.56)
where | = min(p, k).

Proof. For each E € T, and Zu € Pﬁ(ﬁ) satisfying (2.3.55) , it is possible to define
ur|g € VP (see [51] and [53]) as the solution of the following problem : Find u;|r € V2
such that

ur =Zu on OF, and (Vus,Vor)g = (VZu,Vuo,)g Vv, € VAN Hy(E). (2.3.57)
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Moreover, since uy; € Hl(Q) we note that u; € V,f’. From (2.3.57) we have (see [53]),

|Zu — ur|yp = inf{]Iu — zpl1e : 2n € VE and z, = Zu on 8E}.

Therefore,

|U — ullLE S |U —IU,|17E + |IU — U]|17E S |U —Iu|17E + |IU — iL\|1,E, (2358)

where, U is such that u € V;DE is a solution of the problem (see [51]),

AT = AIfuinE
u = Zu ondFE,

where 1% is as in Proposition 2.2 satisfying (2.3.54).

Since (@ — I'”u) is harmonic in E we get,

i — IPuly g < [TPu — Zu|y g. (2.3.59)

Substituting (2.3.59) into (2.3.58) we get,

lu—urhp < |u—Zuly g+ |Tu—Ulp
< |u—Iu|17E+|Iu—IEu|17E+|]Eu—ﬂ|17E
< |u—Iu|1,E+|Iu—[Eu\17E+]IEu—Iu|1,E
< 3lu—Tu|i g+ 2lu — IFul; . (2.3.60)

Applying the results (2.3.54)-(2.3.55) in (2.3.60), and ;» = min(p, k), we get,

hu
lu —urlp < Cp—f||u||k+l,E. (2.3.61)

To bound the term ||u — usl|p g, we consider the following auxiliary problem : Find
¢ € H}(FE) such that

(Vo, Vu)p = (Zu — up,v)p Yo € Hy(E). (2.3.62)

Using u; — Zu = 0 on OF, and (2.3.57) we get,
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lur = Zullg p = (Vo, V(ur = Tu))p = (V(o—I%¢), V(us — Iu))p
< |lo—TIP0lglur — Tulrp.  (2.3.63)

where IEgo € Vg N H&(E) satisfies (2.3.54) giving the estimate,
E hg
o —IFplie < C?H‘PHZE- (2.3.64)
Substituting (2.3.64) into (2.3.63) and noting that ||¢||2,z < C' ||u; — Zul|o g, we get,
hg
”’LL]—IUHQE S C?’U‘r _IU’LE- (2365)

Now, using (2.3.65), applying the results (2.3.55) and (2.3.61) with . = min(p, k), we get,

lu—urllog < |lu—Zullor + [|Zu — urllo,p
< flu=Zulos+ € “Efur - Tl
hg hg
< Hu—Iu|]07E+C’?|u1—u\17E+C?|u—Iu|LE.
Pt
< C pk+1||u||k+1E (2.3.66)

]

Next, using auxillary lemma 2.3 and hp virtual interpolation estimate in (2.3.56), we
derive a convergence estimate with respect to ||| - ||| for the solution of the SUPG stabilized
VEM scheme (2.2.8).

Theorem 2.2. Let assumptions on T, o from the Lemma 2.3 be satisfied. Let up € V)
satisfy problem (2.2.8) and let v € H}(Q)) be the solution of the problem (2.1.1) with
uw e HYYE), p> s> 1, and E is convex, VE € Ty, For sufficiently small h, the following

estimate holds

h2s h2
llu —wnll* < C ¥ & HUHS+1E<KE+ (U+ZO) .
EeT, D p
1 b2k
4rp b2 + min { b } ) (2.3.67)
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Proof. Consider the interpolant u; € V;”. Then Lemma 2.3 implies,

l—wnll? < CNy(u—ur)?
1 b% 312
< - i)'
< Ol url+ (35 min{ s 75 b - i
g1.b} 2
< C(llu—wlP+ % min{—; 22 bu -l ;)
E€T, B K
< | % (IVEV@—u)lBg+ (o +g0) llu—ulis
EcTy,
1 b2 )
7.V —un)lf ) + T min{ 25 Hu—urlf
EET,, 'Ky, ’
< | 2 (Kele—ultp+ 0+ g0) llu = wrlld p+ 7o b3 — wl )
EcTy
1 b2
+ min{—;—E} u— u||? ]
2 min{—i g fllu =l s
Now using (2.3.56) from Lemma 2.4, the desired result (2.3.67) is obtained. L]

In the following, we will present a suitable choice for 75 (proof is similar to [47], Corollary
2.1.)

1 b?

Corollary 2.1. Using the assumptions of Theorem 2.2 along with — < K_b; and consid-
TE B

ering the following choice for Tg in (2.3.67),

_ { hg h?, 1 a+go}
T ~ min : )
" by’ p 2 Kp o+ g0 L2
hib h? , L2 h3
Let us denote Pep := ﬂ, Tg) = %, T = g E2 Then
pKg p* Kg (0 +90)p* Kg
we obtain,
hE opt
I —unllP <€ 52 50 RE ull s m. (2.3.68)
E€T; h

K
where, Ry’ := KE<1+T +P6E+min{maX{PeE; pQM?nv;T%);Tg)} K]j Pej }>

For simplicity we assume the diffusion coefficient K (z) = K. We now discuss the
optimality of (2.3.68) in the cases of convection dominated or reaction dominated phe-

nomenon.
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(a) In the convection dominated case, ie. Pe > max{Tg), T%)} > p?u,, we get,

h hE\2st1
> b Vu—w)lis < €Y (G5l (2369
per, PPF EET,

(b) In the reaction dominated case, ie. min{Y%" YW} > Pe > p?u2 | we get,

h 2542
Y olotg)llu—wlis < €D (=) ulls (2.3.70)

E€Ty, EeTy,

Thus we have obtained the optimal order of convergence in both L? and H' norm respec-

tively. In fact, they are also optimal in the ||-||| norm.

2.4 Numerical experiments

In this section we consider two numerical examples to validate the rate of convergence
obtained theoretically from the error estimates (see section 2.3). The nonlinear system of
equations obtained from the VEM-SUPG discretization is solved with the help of Newton-
GMRES method [54]. We choose constant zero function as our initial guess and the stop-
ping criteria for the Newton’s loop is set as 107, For both the problems we consider the
domain to be [0, 1] x [0, 1].

The convergence of VEM-SUPG technique is evaluated in the L?(2) norm, H'(2)

norm and energy norm denoted by ey, o, e, 1 and e, 3 described as follows,

o = Y lu=TullE, eii= D IV~ uw)lE,

EcTy, EeTy,
s = 2 (IVEV@=1Yun) %+ (0 + go)llu = Dunl[f + 7llb - Viu— TYu) %)
EcTy,

24.1 Example 1

Let o = 2, b(x) = (2,—1), and g(u) = _H—Lu' The source term f is determined by
considering the smooth solution «v = xy sinmx siny. We consider the Dirichlet boundary
condition specified by the solution u. For this problem we perform our computations over
the hexagonal mesh shown in Figure 2.1. The comparison between the unstabilized solution
and the solution computed using VEM-SUPG stabilization for the second order VEM is

shown in Figure 2.2.
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In order to demonstrate the optimal rate of convergence, the error plots computed for
the following values of K = 1073,107% and 10~° and VEM order p = 1,2, 3 are shown
in Figures 2.3. The results agree well with the theoretical results proved in Section 2.3. In
Table 2.1, we present the condition numbers of the Jacobian matrix arising from Newton’s
method for K = 1075. We can observe that the condition numbers obtained for different
mesh sizes h and VEM order p = 1,2, 3 are bounded in the range 10% to 10”. The same
behaviour is observed for other values of K which are not shown here for the sake of

brevity. We confirm that the obtained solutions are stable and accurate.

Figure 2.1: Hexagonal mesh for h = 1/20.

Figure 2.2: Approximation for K = 1072, 2 = 1/20 and p = 2. On the left, Unstabilized
solution, on the right, Stabilized solution.
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h p=1|p=2|p=3
1/12 | 4.5e2 | 2.2e3 | 4.5ed
1724 | 1.5e3 | 6.4e3 | 9.1e5
1/48 | 5.7e3 | 2.2e4 | 1.9€6
1/96 | 2.3e4 | 7.6e4 | 3.7¢6
17192 | 9.1e4 | 2.9e5 | 7.3e6

Table 2.1: Condition number of Jacobian matrix for K = 1076,
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Figure 2.3: Convergence plots with respect to hexagonl mesh for K = 1072 (top), K =
1075 (middle) and K = 10~ (bottom).
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2.4.2 Example 2

Let o = 12, b(z) = (2,3), and g(u) = u®. The source term f is chosen in accordance

with the exact solution

u(z,y) =16z(1 — z)y(l —y)x

2.4.1)
[0.5 + 7~ tarctan (200 (0.25* — (z — 0.5)* — (y — 0.5)%)) } :

For the boundary condition we consider the Dirichlet boundary values prescribed by the
exact solution. Since the solution possesses circular internal layer we would like to check
the rate of convergence on more general polygonal meshes shown in Figure 2.4 along with

its mesh parameters in Table 2.2.

(a) hexagon (b) nonconvex (¢) random voronoi

Figure 2.4: Sample polygonal meshes for h = 1/5.

hexagon nonconvex random voronoi
0.0436 3323 1660 | 0.0442 4801 1600 | 0.0405 10655 5700
0.0219 13042 6520 | 0.0221 19201 6400 | 0.0213 42709 23000
0.0115 51682 25840 | 0.0110 76801 25600 | 0.0113 150617 81800
0.0055 205762 102880 | 0.0054 307201 102400 | 0.0054 632372 340000

Table 2.2: Mesh parameters with degrees of freedom (dof) and number of elements (/Vg).

We have considered VEM of order p = 1, 2, 3 for our computations. The convergence
plots are shown for K = 107° in Figures 2.5 and for K = 10~? in Figures 2.6 respectively.

From the results we observe the expected rates of convergence. We have computed the
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condition number of the Jacobian matrix for hexagon, nonconvex and random voronoi
meshes by varying mesh size h. For K = 107% and VEM order p = 1, 2, 3 the condition
numbers are provided in Table 2.3. Similar to Example 1, we observe that the condition

numbers are bounded in the range 102 to 10®. This implies that the obtained solutions are

stable and accurate.
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Figure 2.5: Convergence plots for hexagonal mesh (top), nonconvex mesh (middle) and
random voronoi mesh (bottom) for K = 107°.

In order to make a comparison with Newton-GMRES (NG) method, we have also
solved the nonlinear system of equations using first order VEM over random voronoi mesh
by fixed point (FP) iteration method. Similar to NG method initial guess is taken as zero

function and stopping criteria is considered as 107!, The results are displayed in Table
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2.4 in terms of number of iterations and CPU time in seconds. Even though the number

of iterations taken by FP is more than NG, the CPU time taken is relatively less. Similar

results are also observed for regular hexagon and nonconvex meshes which are not shown

here for the sake of brevity.
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Figure 2.6: Convergence plots for hexagonal mesh (top), nonconvex
random voronoi mesh (bottom) for K = 10~°.

2.5 Summary

107 107
Mesh size

Hp=3

mesh (middle) and

This chapter has formulated and analysed the virtual element discretisation of the non-

linear convection-diffusion-reaction equation with Streamline upwind Petrov Galerkin sta-
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hexagon nonconvex random voronoi

h p=1|p=2|p=3|p=1|p=2|p=3|p=1|p=2|p=3
1/12 | 1.1e2 | 7.9e2 | 1.6eb | 1.6e2 | 1.6e3 | 2.7e5 | 4.6e2 | 6.2e3 | 9.1e5
1724 | 3.7e2 | 1.6e3 | 2.9¢5 | 5.4e2 | 2.9e3 | 4.4eb | 3.1e3 | 1.6e4 | 4.1€6
1/48 | 1.4e3 | 5.2e3 | 5.4eb | 2.1e3 | 6.7e3 | 7.9eb | 9.6e3 | 4.4e4 | 7.5e6
1/96 | 5.6e3 | 1.9¢4 | 1.1e6 | 7.9e3 | 2.5e4 | 1.4e6 | 4.8¢4 | 1.4eb5 | 2.9¢7
1/192 | 2.3e4 | 7.1ed | 8.1e6 | 3.1ed | 9.2e4 | 9.1e6 | 1.8e5 | 5.2e5 | 7.2e7

Table 2.3: Condition number of Jacobian matrix for X = 1076,

h NG FP
Iteration = Time | Iterations Time
1/12 5 0.65s 10 0.58s
1/24 5 2.52s 10 2.45s
1/48 5 13.88s 11 9.86s
1/96 5 157.60s 11 40.06s

Table 2.4: Comparison table for NG and FP

bilization. We have suitably added the VEM stabilizer for the nonlinear term to ensure the
well-posedness. We deduced an inverse inequality result satisfied by functions in virtual
element space with explicit coefficients of A and p. We obtained a virtual element interpo-
lation operator with optimal approximation property in L? and H' norm for mesh size h

and polynomial order p. Error estimate showing optimal rate of convergence in parameters

h and p were derived with respect to the natural norm, ||| - |||. We conducted numerical ex-
periments on two problems. The first problem contains a smooth solution, and the second
example consists of a solution possessing circular internal layers. However, we observe a
stable solution for both samples, even for a very small diffusion coefficient /. As proved in
the theoretical estimates, we attained the optimal convergence rate for higher-order virtual

element schemes and various convex and non-convex polygonal meshes.
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Chapter 3
A shock-capturing Virtual Element Method

for the semilinear convection-diffusion-reaction

equation

The SUPG stabilization of VEM discussed in Chapter 2 reduces spurious oscillations
along the streamline or flow direction. In literature, we note that sometimes even for lin-
ear problems with discontinuities, mere SUPG stabilization of numerical methods do not
entirely remove the unphysical oscillations occurring at the layers ([55],[56]). The fluc-
tuations in the SUPG solution is due to the presence of sharp layers not aligned with the
flow direction. Thus we must add additional stabilization to the SUPG method to obtain
a more accurate approximate solution. In particular, the added stabilization term must ef-
ficiently act along the crosswind direction to capture the oscillations. The remedy to this
situation is usually called the shock-capturing technique, which adds artificial diffusion in
the transverse direction around regions of layers. As we shall see, the shock-capturing term
is nonlinear since it involves the residual of the numerical method, which depends on the
approximate solution.

The shock capturing stabilization for a one-dimensional singularly perturbed problem
and its generalisation to multidimensional model problems is studied in [57]. The exposi-
tion and application of shock-capturing technique in the finite element context, for linear
advection-diffusion model problems can be found for example in [58], [59], [60], [61] ; for
nonlinear convection-diffusion-rection equations in [62], [47] and for hyperbolic system
of conservation laws in [63]. A review of the shock-capturing technique, along with the
comparison of various choices of proposed shock-capturing parameters, is given in [64].

This chapter studies the shock-capturing stabilization of VEM for the convection-diffusion

problems. We first discuss the shock-capturing technique for the linear convection-diffusion-
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reaction equation. The parameter in the shock-capturing term is a function of scaled resid-
ual. To evaluate the norm of the residual we need to know explicit definition of the nu-
merical solution in the virtual element space. But, in VEM we only have knowledge about
the polynomial subspace and the functions are identified only through degrees of free-
dom. Therefore, to estimate the norm of the residual, we introduce suitable polynomial
projection operators in the expression of residual, in the VEM setting. In section 3.1, a
computable virtual element formulation stabilized with SUPG and shock-capturing term is
proposed. From chapter 2, it is evident that a VEM stabilization of the SUPG stabilization
is required to ensure the coercivity of the VEM-SUPG formulation. Along similar lines, for
the shock-capturing term, we add a VEM stabilizer with appropriate nonlinear coefficients,
to ensure stability of the discrete scheme. Surprisingly, shock-capturing approximation of
a linear problem produces a nonlinear discrete scheme. We examine the well-posedness of
the nonlinear discrete scheme and investigate the efficiency of the shock-capturing method
with numerical examples. With this inducement, it would be interesting to analyse the
shock-capturing technique for semilinear transport problems which models many scien-
tific/engineering applications.

Subsequently, we describe the shock-capturing stabilization for semilinear convection-
diffusion-reaction equation in the VEM framework in section 3.6. Different from the linear
case, for approximating the nonlinear reaction functions, an extra VEM stabilizer with suit-
able linear coefficient is introduced. It would be interesting to verify if the shock-capturing
stabilization and the additional VEM stabilsers in the VEM formulation, do not deteriorate
the convergence rate. We give a detailed analysis of the nonlinear scheme showing the
convergence of the family of discrete solutions to the exact solution and obtaining optimal

order error estimate with respect to suitable natural norm.

3.1 Linear model Problem

Let us consider the linear convection-diffusion equation with homogeneous Dirichlet

boundary condition:

—V - (KVu)+b-Vut+au = f in Q,
u = 0 on 0N (3.1.1)

Here u(z) denotes the unknown where z € 0 C R?, K > 0, b € W1*°(Q)? is the velocity
field, « > 0 and f € L*(2). We also assume (V - b)(z) = 0 a.ein Q and K > Ky > 0.
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The bilinear form of equation (3.1.1) is defined as B : H}(Q) x H}(2) — R such that
B(w,v) = (KVw, V) + (b- Vw,v)q + (aw,v)q Yw,v € Hy(Q).

Using integration by parts on the convective term (b - Vw, v) and the condition V - b = 0,

the bilinear form B, can be equivalently redefined as, Vw,v € H, (} (Q)
B(w,v) = (KVw, Vv)q + %[(b -Vw,v)q — (w,b - Vo)g] + (cw, v)q. (3.1.2)
The weak formulation of (3.1.1) is : Find w € H}(€2) such that
B(u,v) = (f,v)q Vv e Hi(Q). (3.1.3)
The existence and uniqueness of the solution of weak formulation (3.1.3) follows from the

Lax-Milgram lemma [65].

3.1.1 VEM Spaces

Consider {75, }r>0 to be a family of polygonal partitioning of € satisfying the assump-
tion 1.1 stated in Chapter 1. In our analysis, we use the polynomial projection operators
HZ, Hg and Hgfl defined in (1.3.1), (1.3.2) and (1.3.3), respectively. For approximation
we consider the global virtual element space V} given in (1.3.5).

3.2 VEM-SUPG formulation

We tackle the singularly perturbed case i.e., K < 1, as done in Chapter 2 and proceed
to define the SUPG stabilized virtual element discretisation of the formulation (3.1.3) as
follows. Find w;, € V}¥ such that

Bvs(uh,vh) = Fvs<Uh) VUh € V}f), (321)
where the bilinear form B, : V}' x V}’ — R s such that,
Bys(wn, vp) = ap(wn, vs) + bp(wn, va) + cn(wn, v) + dp(wn, vp), (3.2.2)

with the terms ap (-, -), bu(+, ), cn(+,+), and dj(-,-) defined as below,
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ah(wh, Uh) = Z [(KHgAth, H271Vvh)E —+ TE(b . H271th7b . Hf,fleh)E

E€Ty
+(K +75b%) ST (I = IR Ywp, (I =TI Jvp) | - (3.2.3)
bu(wh,vn) = > [(dIwp, Ivs) g + ST (I — II)wy, (I — 1IY)vp)]. (3.2.4)
E€Ty
1
ch(wh, Uh) = 5 E [(b . H‘gfleh, Hgvh)E — (ngh, b- H271Vvh)E] . (325)
E€Th
dp(wp,vn) = Y 7 (=V - KT, Vw, + ollw,,b - T Vuy) .. (3.2.6)
E€Ty

and the linear form F; : V}” — R is defined as

Fos(vp) i= E;T [(f, T0vn) g + TR (f, b - 119, Voy)g]. (3.2.7)

where bg = sup ||b(z)||gz, 7& is the stabilization parameter that is chosen accordingly and,
B D)

as usual the VEM Stabilizers Sf(-,-) and SF(-, ) denotes the symmetric positive bilinear

forms defined on V% x V£ by the following,

N N

ST (up,vp) = > dof;(up,) dofi(vy) and  SF(up,vs) = h% S dofi(uy) dof;(vy,),
i=1 =1

where dof;(uy) denotes the ith degree of freedom of u;, with NV denoting the total degrees

of freedom. Let there exists non-zero positive constants 3., 5%, 7, and n* independent of

hg, such that,

Bu(Vup, Vup)p <SP (up,un) < B*(Vun, Vun)p  Vuy € ker(I1)), (3.2.8)
Ne(up,upn)e < SE(up,up) < 0 (up,un)e Yuy, € ker(Hg). (3.2.9)
We introduce the norm ||| - ||| to be used in our error analysis,
vl = EZT (K[[VollE + [[VevllE + 7ellb - VollE) . (3.2.10)
€/n

We state the local inverse inequality to be used later; there exists a constant C; such that,

IV - KVullor < Crhy' | K Vupllog Yo, €Vy, and E € Ty, (3.2.11)
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For analysis, we assume the following constraints on the local SUPG parameter 75 :

(G1) 3 p € (0,3) independent of E € T}, such that
, s 1 . 1 .
E X 5 Et x o L. )
(i) K7 C] <2PhE and (ii) 7 a<2p a.e. inf)

where (] is the same constant used in (3.2.11). An optimal choice for 7z will be discussed

in error analysis for nonlinear model problem in theorem 3.6.

3.3 Well-posedness of VEM-SUPG formulation

In this section we will show the well-posedness of the VEM-SUPG formulation (3.2.1)

by first showing the coercivity and then the continuity of bilinear form B, ;.

Lemma 3.1. (Coercivity) The bilinear form B,s(-, -) satisfies the following estimate,
BUS(UmUh) = Cp |||Uh|||2 Vo, € Vi, (3.3.1)

with C, = min {B*, e, (1 — g)} > 0.

Proof. We estimate the terms of B,,(-,-) one by one. We have,

ah(vh, Uh) = Z [(KH2_1Vvh, H2_1Vvh)E —+ TE(b . Hg_1Vvh, b- H2_1Vvh)E
E€Th

+(K +75b%)SP (I = I Yvp, (I = TIY Jvy) |

> E;T (KT, Vou[ + 7illb - T Vou|[3; + Bu(K + 7eb3) (T — 1Y) Vor |17
h
> EZT (KT Vou[5 + 7l - T Vou |5 + Bu(K + 7ebE) (T — TI)_,) Vuu| 3]
Similarly, o (3.3.2)
bu(un,vn) = EEZT a (ITwall% + nell (T — TR)walf3) - (3.3.3)
h

Note that ¢, (vp,, v,) = 0. Next, estimating the last term of B,s, we have for some A\ > 0,

|dh(vh, Uh)| < Z |TE (—V . KHg_IVvh + O./Hgl)h, b - Hg_IVvh)E |

E€Ty,
< Y 7| =V KIL_ Vo, + olllvlog b - TI)_ Vo lo,e
E€T,

A
<X (351 = V- KTI_ Funl3, + ZEllaT0un % + 272 (b - T15_, Wy |3)
h
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Applying the inverse inequality (3.2.11), (G1) and then choosing A = /p, we get,

A
(o, o) < 3 (F KT Fonll3, + 51l vVa el + AZ2 (b - 115, un 3

E€Thy

)
< & (PrI vult + Pivangulg + Y5 b m ).

EET;,
(3.3.4)
Combining the estimates (3.3.2), (3.3.3) and (3.3.4), we have,
Bulonn) > (1= %) & [(KIN,Fonll + b T, Vonl + ol 1 ] +
EET;,
> [ Be(K 4 1ebp) (T = T_)Vunllh +n.all (1 = TR)wnl% ]
EET;,
> mi _Vr 2 ) 2 2
>min 4§ B, 1., (1 5 )t 2 ( KlIVully + 7elb - Vou |E + allvall% )
EET;,

Thus, we obtain the estimate (3.3.1), proving the coercivity. 0

Lemma 3.2. For u € Hg(Q) with (V- KVu)|p € L*(E), VE € T;, and vy, € V), we have,

|Bvs(u7 'Uh)| < Cvs /y(u) |||Uh|||’ (335)

where C4 is a constant depending on K, b, and o, but independent of h and T, and

[ 1 by >
)= el + (5 min{ 2572 ) (336

EcTh

Proof. Using the inequality (3.2.8), we estimate,

lap (u,vp)] < D) [| (KH?,fqu, H2,1Vvh)E‘ + ‘TE<b : H?,fqu,b : HgAVUh)E!
EcT,

+ B (K + b (1 = ) Vullog (1 — Hkv)vvhHO,E}

b%TE

Ko

< S (L4 8) K[ Vallosl|Vonllos + (

EeTy,

) (1 + 8K [ Vullo s Vonllos

. b3 75 a
<(1+p57 X K||VU||0,E||VUh||0,E+( %E )K||VU||0,E||VUh||0,E
E€Ty, 0

2
<148 (1+max (;’(EQ)) S K||\Vullosl|Vorllor  (use (i) of (G1))

E€Th 0 EET,
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Using Holder’s inequality, we get,

2
antu o)l <+ 5% (14 ma (F22)) Dl ol (337)

Similarly using (3.2.9), we have,
0w (w, vn) | < (1407 [[|ull] [[lonl]]- (3.3.8)

Consider the third term |cp, (u, v;,)|, we note,

1 1
| (u, )| <3 3 |(b-H2_1Vu,Hgvh)E)|+§ > |(I0u,b - IL)_,Vuy,)gl.  (3.3.9)
EeTh EeTh

Estimating the first term of (3.3.9), we get,

1 1 b
— b-I1° ., Vu, 1% <= ( L )\/K Vu allv
2E;T;L’( p—1 SUR)E)| 2E;rh Koo | Vullo,ev/allvnllo,e
br
< | 31
s (<22 ol ol 3310

The second term of (3.3.9) is estimated in two different ways namely,

1 1 1
- 0. b -TI° |V <= i bevis e, /i
2 E%;’h ‘( pu7 p—1 Uh)E’ 2 E%';h \/EHUHQE Koo H UhHO,E

b /P 1 3
\(gg@;;m)<%5||u||%) lonlll. 3311

N

1 1 bz
- M0u, b -II°_ Vo) p| <= u VK| Vv
2 E;,h |< P p—1 h)E| 9 EGZ’Th || ||07E\/FO “ h||0,E
b2 >
<( 32 2Zlll) ol (3:3.12)
EeT;, 1Yo

Combining the estimates in (3.3.10),(3.3.11) and (3.3.12) we have,

br
cplu,v < ma U v +
e o] < g (<22 ) Ml el

1

by NN :
1; === 2 . (3.3.13
maX( ’IEnea%f \/K_OO[> <E€Z7’hmln{TE’ KO ||u”E |HU’7«|H ( )
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Now, we estimate,

|dn(u, vp)| < EZF (el = V - KII)_, Vullo g + 75|la Ioullo,)|b - IL_; Vo |lo,z
€'/n

< 2 (el = V- KT, Vullog|b - IT,_, Voulo,r)
EcThy

+ (tellaullo,z|b - IL_, Vo|o,e)

Using the inverse inequality (3.2.11) and the assumptions in (G1), we get,

b
ol < T (5505 ) (KIVulogIVonlos + valulosvEITuloe)

E€Th
pbg
< ma U uplll- 3.3.14
o (2= ) Ml el 33.14)

Let B = gl@/;{bE and C = (Koa)_%. Then, combining the estimates (3.3.7), (3.3.8),
S
(3.3.13) and (3.3.14) we obtain the result (3.3.5) with

Chs = max{ (14 891+ pB%C%) + (1+17°) + BC+ pBC ; max(1,/pBC) }

Hence the lemma is proved. [

3.4 VEM-SUPG with shock-capturing

In this section we formulate the shock-capturing technique for the VEM discretization
of our model problem (3.1.1) and discuss the results concerning the proof of existence of

discrete solution. Consider the following term,

Tee(w;u,v) = > <5E(w)NSCH2_1Vu,H2_1VU>E

EeTh

where, N, is a symmetric positive definite matrix function such that ||(Ny)(j)lls0 < 1
and dp(w) is chosen satisfying the following condition:

(G2) We suppose that iz (w) depends continuously on w and

h—0
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We consider the following shock-capturing formulation, find u;, € V" such that,
Bvs(uha Uh) + Tsc(uh; Up, Uh) = Fvs(vh) v/Uh € V}fa (343)

Let us consider the following two choices for dr and N,. concerning addition of the
isotropic and anisotropic diffusion.

Case 1: Anisotropic diffusion

o) ~ZEN L) Sl 1 P b A s
K+ || VIL wllo.z 0.b=0
Case II : Isotropic diffusion

5 (w) =B Leclw) = il . Ny =1 (3.4.5)

[+ (Il + VT wl[3)?)

where, og(w) > 0, k > 0 are chosen such that 05 satisfies (3.4.2), and

Le(w) := =V - (KII)_,Vw) + b - II)_, Vw + a T w. (3.4.6)

We make a particular choice for oy as follows (refer [55]),
og(w) := lphp max {O, 8 — MZ—;((UJ)} , (3.4.7)

|Zoolw) = flloe
ot (I0w]3, + VT w]3) |

where, Rj(w) := [ and parameters { lp, x, 5} C (0,1).

Remark 3.1. The effect of §z(w) becomes significant only when the residual || Ls.(w) —
fllo.E is very large.

Remark 3.2. The limiter function dz depends on wu,. Thus with shock-capturing term in
equation (3.4.1), the discrete formulation reduces to nonlinear system of equations. This

significantly increases the computational cost of solving a linear model problem.

Now, we proceed to prove the existence of a numerical solution for the scheme (3.4.3)
by the following theorem.

Theorem 3.1. The shock-capturing scheme (3.4.3) has at least one solution u, € V)’
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satisfying the condition,

Hunll)? + Tae(un; un, up) < C || £|12 (3.4.8)

with the dual norm || £, = sup Leelt)
onevivioy MOl

Proof. We use a variant of Brouwer’s fixed point theorem (see [66], II, Lemma 1.4) to show
the existence of a solution.

For this, let us define an inner product on V! as (v, vp,) := (Voup, Vo) and let P :
Vi’ — Vi be an operator, such that,

<Puh7 Uh> = (vpuha Vvh) = Bvs(uh7 Uh) + Tsc(uh; Up, ’Uh) - Fvs(“h)- (349)
Using lemma (3.1) and Young’s inequality we get,

<th7 Uh> :Tsc<vh; Uh, Uh) + Bvs(vha Uh) - Fvs(vh)
2
2Tse(vns vy vn) + Cplllonlll™ = (ILFIIL Mvnll

C 1
2 Tse(vn; vn, vn) + jf’ll\vhHl2 - 2—CprH|i (3.4.10)

We conclude that (Pvy, vy) > 0 for all v, € V;, with (vy, vs) = | V|2 > CC, || fIl,, for
some constant C' > 0. Clearly, I, is continuous. Also lemma 3.2 and the assumption (G2)
imply the continuity of B, and T.. Thus, we get that the operator P is continuous. Then,
using a variant of Brouwer’s fixed point theorem (see [66]) we get atleast one solution
uy, satisfying P(uy,) = 0. This inturn implies the existence of a solution of the discrete
problem and finally the estimate (3.4.8) is obtained by using P(u;) = 0 in the inequality
(3.4.10). [

Remark 3.3. We have shown the existence of atleast one solution for the shock-capturing
technique, but unfortunately the uniqueness result is still open. If we assume that dp is
Lipschitz continuous then using Banach fixed point theorem we can prove the uniqueness.
But this condition restricts the choice of d g for practical applications. On the otherhand, us-
ing the result of Schauder fixed point theorem [67] a corresponding result using Brouwer’s
fixed point theorem with specific assumptions on dz the uniqueness result can be proved.

Once again this imposes severe restrictions on 0.

Remark 3.4. We would also like to mention that the choice of 0 given in equation (3.4.4)

does not satisfy the Lipschitz continuity.
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3.5 Numerical experiments

In this section we illustrate the performance of shock-capturing technique with an ex-
ample. We would like to make the following choice for the stabilization parameter 75

proposed in [54],
. [he 1 h3 }
Tp =mins —; —; — (3.5.1)
{ bl o] K
The reduced nonlinear algebraic system of equations can be solved by the application of
inexact Newton-GMRES algorithm [68]. Since this approach is very expensive we consider

solving the scheme (3.4.3) using the following simple iterative technique,
n €N, B,s(U™ 0) + T, (U™ U v) = F(v) Yo ey (3.5.2)

The well-posedness of this iterative technique is discussed in [55].
For our numerical experiment we consider four different type of meshes namely, smoothed
Voronoi, nonconvex polygons, regular hexagons and distorted hexagons respectively shown

in figure 3.1. We use VEM of order £ = 1 and k£ = 2 for our computations.

(a) Smoothed Voronoi (b) Nonconvex polygons (c) Regular hexagons (d) Distorted hexagons

Figure 3.1: Polygonal meshes

3.5.1 Example 1

We consider a stationary linear convection-diffusion problem. Let Q = (0,1)%, K =
1075 b = (—y,z), a = 1, and f = 0, in equation (3.1.1). We specify the discontinuous
boundary conditions as follows : the Dirichlet condition u(x,y) = 1 for x € (%, %), y=20
and u(x,y) = 0 on the remaining parts of lower boundary as well as on the right and

upper boundary; assume the homogeneous Neumann condition on the left boundary, ie.

%ﬁ’y) = 0forz =0, y € (0,1), where n is the unit outerward normal. The discontinuous
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profile specified on the boundary is carried over to the characteristic curves and the solution

develops interior layers.

To present our numerical results we denote SUPG with shock-capturing and without
shock-capturing as SUPG-SC and SUPG respectively. We choose the following values in
the equation (3.4.4) as [, = 0.2, 8 = 0.7andx = 10~%. The iterative scheme (3.5.2) is
used for solving the nonlinear system with tolerance 10~7. We note that the solution has
two interior layers that are efficiently damped by the VEM-SUPG with shock capturing
method on both the orders £ = 1 and £ = 2. The cross-section plots of the solution at the
left outflow boundary for both SUPG and SUPG-SC are shown in figures 3.2-3.5.

SUPG-SC
s SUPG

SUPG-SC

0 0.2 04 06 0.8 1 0 0.2 0.4 086 0.8 1
y y

@k=1,h=1/40 () k=1, h=1/80

SUPG-SC
e SUPG

0 0.2 04 08 08 q 0 0.2 0.4 06 0.8 1
y Y

(© k=2 h=1/40 @k=2 h=1/80

Figure 3.2: Smoothed Voronoi: The cross-section plots of the solution at the left outflow
boundary.
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7 “ SUPG-SC|
04 - SUPG 04

-005 -005 005
0 02 04 08 08 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
¥y

y y

@k=1,h=1/40 (b) k=1, h=1/80 (€ k=2 h=1/40 @ k=2 h=1/80

Figure 3.3: Nonconvex polygons: The cross-section plots of the solution at the left outflow
boundary.

———SUPGSC
SUPG 04

-005
08 1 0 01 02 03 04 05 06 07 08 09 1

v

@k=1,h=1/40 (b)k=1,h=1/80 (©k=2,h=1/40 dk=2 h=1/80

Figure 3.4: Regular hexagons: The cross-section plots of the solution at the left outflow
boundary.

SUPGSC
L e S SUPG 04

005 -005 -0.05
4 02 04 [ 08 1 0 01 02 03 04 05 06 07 08 09 1 0 02 04 06 08 1

vy y v

(@ k=1 h=1/40 (b)k=1,h=1/80 (© k=2 h=1/40 (k=2 h=1/80

Figure 3.5: Distorted hexagons: The cross-section plots of the solution at the left outflow
boundary.

To compare the results with finite element method we consider the mesh of structured
triangles shown in figure 3.6. We show the cross-section plots of both FEM and VEM at
the left outflow boundary for order £ = 1 in figure 3.7. We can observe that VEM performs

similar to FEM in reducing the oscillations along the sharp layers.
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Figure 3.6: Sample structured triangle mesh.

045 : 0.45
0.4 ’ 04
035 0.35
03t 03
025f 0.25
s 02 > o2
0.15 0.15
01 0.1
0.05 0.05
0 0

-0'050 o.‘1 0:2 0:3 0:4 o.‘s o:e 0:7 o‘za 019 1 0y 02 04 08 08 1

¥ y
@FEM: k=1,h=1/40 () VEM : k=1, h=1/40
0.45 : : . .

0.35 1
03
0.25
s s 0z
0.15
01
0.08
0

%% 01 oz 03 04 05 05 07 08 09 1 %% 0.2 0.4 (] 0.8 1

y ¥
(© FEM : k=1, h=1/80 @VEM :k=1,h=1/80

Figure 3.7: Structured triangle: The cross-section plots of the solution at the left outflow
boundary.

3.5.2 Example 2

In this example we consider the problem (see Example 4.1) discussed in [47]. Let

1
Q= (0,1 K = 107% b = —(1,2)” with added nonlinear reaction term u®. We

V5
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25’31_332_?11

VbH K
hibits an interior layer with thickness O(v/K |In K|). We use Dirichlet boundary values

prescribed by the solution. In order to make a comparison with finite element method we

1
consider the exact solution as u(z) = 3 (1 — tanh ( )) This solution ex-

have considered regular triangular meshes for the numerical computation. We present a
result (see table 3.1) depicting the errors evaluated in |||-|| along with roc i.e., the rate of
convergence. From this we observe that our proposed method performs better than the
method discussed in the paper [47].

Table 3.1: Comparison of errors in |||-|| and the rate of convergence (roc).
Order k = 2.
SC-CD (Table 1,[47]) | SUPG-SC (VEM)

h -1 roc (IRl roc
T | 1.70e-01 x 1.43¢-01 *

% 1.32e-01 0.36 1.02e-01 0.48
1—16 1.13e-01 0.22 7.14e-02 | 0.52
3—12 9.05e-02 0.32 5.33e-02 | 042
6—14 7.05e-02 0.36 3.85e-02 | 047
o5 | 537e-02 | 039 |[2.67e-02| 0.53

So far, we have proposed a computable shock-capturing method stabilized VEM for-
mulation of linear convection-diffusion-reaction equation. The resulting discrete scheme
turned out to be nonlinear. Hence to overcome the cost of solving a nonlinear system of
algebraic equations, we have used the simple iterative technique. From the numerical ex-
amples, we observe that the performance of the shock-capturing technique is consistent for
the meshes considered. In particular, the reduction of spurious oscillations by the shock-
capturing terms is much more evident for the VEM of order £ = 2.

As mentioned earlier, a lot of practical applications are studied with the help of nonlin-
ear transport equations. In the remaining sections, we perform theoretical and numerical
analysis of the shock-capturing stabilization of VEM for semilinear convection-diffusion-

reaction equations.
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3.6 Semilinear model Problem

Let us consider the following model equation on a bounded domain 2 C R? :

V. (DVU)+ B -Vu+ ) = f in Q
u = 0 on 09, (3.6.1)

where u is the solution variable, usually representing concentration of a specific particle
in a medium, D is the diffusion parameter, F is the convection/velocity field, W(-) is the
reaction term which is a nonlinear function of u and f is the source/sink function of .
Without loss of generality we let the solution u of (3.6.1) to be non-negative and
bounded above i.e., up < u < wy; with uy > 0. In our analysis we assume that f €
[2(Q), D e L¥(Q) and § € [W'(Q)]2, with D(z) > Dy > 0, (V- §)(x) = 0 for ae

x € ). On the nonlinear function ¥ we suppose that
¥ e CYR) with ¥(0)=0, ¥'(s)>¥,>0 for scR". (3.6.2)
The variational formulation of (3.6.1) is given by : Find u € H} () such that
(DVu,Vou)g + (F -Vu,v)g + (U(u),v)q = (f,v)a Yo e Hi(Q). (3.6.3)

Under above assumptions, the existence and uniqueness of a solution u € Hg (2) for (3.6.3)

is shown in [69].

3.7 Shock-capturing virtual element method

Deducing an approximate solution for (3.6.1) in the singularly perturbed case 0 < D <
1, is interesting and requires suitable modification of (3.6.3). Under the effect of dominat-
ing convection and/or reaction phenomenon, layers are formed in the solutions and the
variational form (3.6.3) produces solutions with unnecessary oscillations. The shock cap-
turing (SC) technique added to SUPG method captures localised spurious oscillations in
the crosswind direction. Thus we begin by presenting the SUPG and SC stabilized discrete
formulation of (3.6.3) :Find u;, € V,f such that

Asupg(uh, Uh) -+ ASC(Uh, Uh) = F(Uh) Yy, € Vf, (3.7.1)
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where,

Asupg(uh, Uh) = (D Vuh, V’Uh)ﬂ -+ (? . Vuh, ’Uh)Q + (\Il(uh), Uh)Q
+ > 7 (—DAuh + ? -Vup + ¥ (up), ﬁ . Vvh>E,

E€Ty,

Age(up,vp) = > (&p(up) P*Vuy, Vuy ) g,  F(un) = (f,on)qg+ D TE<f,E : Vvh)E.

EcTh EcTh
The parameter 7 is a local stabilization term associated with SUPG method. The variable
P3¢ = (p;§ )7 ;- denotes a symmetric positive-definite (SPD) matrix function. Also &g is
a non-negative restricting function defined as ( see [47] ),

~ V.-’ _DVz Vz+U(z) -
ole) im en(rp) & rp(e) o | Z Y TOAPVEE T VA UC)  flusy

||ZH1,E+0E

More assumptions and detailed definition of 75, P*° and o will be discussed in the sequel.
The terms in discrete scheme (3.7.1) are not computable in the VEM approach ( see
sec.31in [70] ). So with the help of projection operators defined in section 3.1.1, we proceed

to appropriately redefine the scheme (3.7.1).

First we define A,s,(v,w) := a(v,w) + b(v, w) + ¢(v,w) where,

a(v,w) = (D H2_1Vv, Hg_lvw)ﬂ + > & <F . H2_1VU7 F : H2_1Vw>
E€T, E
+ > Dep+7mehE) ST (I -10) v, (I —1IIY) w), (3.7.3)
E€Ty
1
b(v,w) = 5[ (? . Hg_IVv, ng>ﬂ — (Hgv, F . Hg_IVw>Q}
+ 3 (- KTV, ?-Hg_lwu) , (3.7.4)
E€T;, E
c(v,w) = (V1) Mw), + > oSF ((I =T, (I —II0)w)
E€T,,
+ 3 (W), § T V), (3.7.5)
E€T,

with Dy, = sup D(x), DY = inf D(x) and s := sup | (1) Jo 52
S z€FE

zel

The symmetric bilinear form S¥, S¥ in (3.7.3), (3.7.5) are functions defined on VA x V£

ensuring that there exists non-zero positive constants a., o, p,, p*, with a, < o* and
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s < p*, independent of hg, such that,

a*(Vuh, Vuh)E < SlE(Uh,Uh) < a*(Vuh, Vuh)E Yuy, € ker(HZ), (376)
o, un)g < SE (up,up) < pt(up, un) e Vuy, € ker(I).  (3.7.7)

Let us denote, £z := —V - (DII)_;Vz) + ? I, Vz+ @(ng). Next we define,

Ape(ziv,0) = 3 { (Gplz) P11 Vo, T V)
EET;, E

F0ue(2) SE((T=T) v, (1 =T ) w) |, (378)

| R o . 1Lz — fllo.g
with  &p(2) == Ep( Rp(2) ) and Rj(2) == 11192 ||0,z + |HV;’1 5+0p
p~ 1Y, pis

(3.7.9)

The variable o is a regularisation parameter (see [47]) and the approximation gs.(-) €
L*>(Q) in (3.7.8) is suitably chosen such that, there exists real constants 0 < 7, < ~*
satisfying

Ve Ase(z3w,w) < Apse(z3w,w) < 7* Age(z5w,w)  Yw € VP (3.7.10)

For our analysis, we assume that the matrix norm || P*°||. o < 1 and for each £ € 7, there

exists a map ¢ : Rt — R such that
lim ¢p(s) =0 and 0< E2(v) < goe(v) < dp(hE) Vv e VP, (3.7.11)
s—

The computational choice for g,.(-) will be discussed in the numerical experiment section.

Last we define,  Fop(w) = (f, %), + ¥ 75 (f,?-ng_lvu]) . (3.7.12)
EcT, E

Then, a discrete virtual element formulation of a general shock capturing scheme combined
with the SUPG stabilization is : Find u;, € V}” such that

Avsg(uh, Uh) + Avsc(uh; Up, Uh) = Fvsg(vh) Vvh € Vhp (3713)

Remark 3.5. From the definition of &, £(2)in (3.7.9) we note that the contribution of A,.(z; -, -)
is restricted to those elements £ € 7T, where the residual ( Lz — f) is significant. The vari-
ants of the shock capturing method are determined by the choice of definition for P*¢ in

(3.7.8). In this paper we will discuss two variants of SC technique in section 3.9.
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Remark 3.6. If sometimes W' is not bound above, then we can consider the modification
(2.18) in [47] for ¥ in the subsequent analysis. Noting that ¥’ is continuous and bounded
on compact intervals of v implies W is Lipschitz continuous, say with some Lipschitz con-
stant Lg > 0.

3.8 Preliminary Analysis
We introduce the norm

ol = > (WD Vol + o lloli s+ w18Vl 5).

EcT,

Consider the hp-inverse estimate ( see (4.2) in [69] ) satisfied by each v, € V),
| Avpllo.e < cinv p” BE" 081, (3.8.1)

where, ¢,y > 0 is independent of v, E, hy and p. Now we state the coercivity result satisfied
by Avsg('a )

Lemma 3.3. Let us assume the following condition on Tg for all E € Ty, :

LR 0

Then we have A,oo(w,w) > 0 ||w]|*> Yw € V/”, where 6 = min {1, a., p.}.

Proof. Let w € V) be arbitrary. Consider a(w, w) in (3.7.3). Using (3.7.6), the inequality
I(I =TI _,)Vupllo.p < [V(I —IIY Jus [lo,e ( see [12] ) and definition of D, we obtain

a(w,w) = ¥ (VDT Vull} g+ Dpaull( = TVl .

E€Ty,

7l B T Vol o+ 7083 o |(T = T, ) Vol )

2 (VDT Vul o + e |VD(I = T8V,
S

+rpl| B T V|2 + sl B - (1 - Hg,l)vu)ugﬂ). (3.8.3)

v

Next we consider b(w, w) in (3.7.4). Using Cauchy-Schwarz inequality, we have
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b(w, w)| = ]o+ TE(—V-DHg,Nw,E-Hg,Nzu)E‘
EeTy,

< Y VDI Vs | B T, Vil s

EeTy,
h2
Using the inverse estimate (3.8.1) and 0 < 75 < 2— we get,
4 pic; Dg
IV DI Vulor < ——[|VDI)_ Vs (3.8.4)

\/_

Then using (3.8.4) and Young’s inequality for products we obtain,

bl < T (SoIVP Volos) (LEIF 1 Vol )

EGTh
< 1 % (VP Vul o+ me 7 TVl )
EETh
Ths, bw,w) > — ;(W‘H 1Vw\|g,E+TEy|E-Hg_lwugﬂ). (3.8.5)
EcTy

Next we consider ¢(w, w) in (3.7.5). First we note, using ¥(0) = 0, Lipschitz continuity
of ¥ and ¥'(s) > Wy, s € RT, we obtain

1\
(W (Iw), Mw) = (¥ (Mw) — (0), Mw) > (Vo w, Mw) > > > [Hwl -
EeTy,
(3.8.6)
Using the estimates (3.8.6) and (3.7.7) we get

W
c(w,w) = 5 (L IMw]E g+ e Woll (1= wlR ) + X 7 (W(Tw), 7105, Vo)

E€Ty, E€Ty,

J/

-~

=I

Applying Cauchy-Schwarz inequality, Lipschitz continuity of ¥(-), 0 < 75 < 4\PT02 and

Young’s inequality for products, we get,
1 0,,[12 F 0 2

1< 7 2 (Woluld e+ el 515, Vol s).
€/n

. Yo 110, 112 0 2 1 ? 0 2

. c(w,w) = EZT (7 ITwl[g & + s Yol (I = I)w[§ 5 — 1'E 15 - Hp—lvaO,E)' (3.8.7)
€/n
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Substituting the results (3.8.3), (3.8.5), (3.8.7) into A,y (w,w) = a(w,w) + b(w,w) +

c(w, w), we obtain Aye(w,w) > min {1, a,, p.} ||Jwl|| forall w € V7. O

We shall show the existence of a discrete solution for the scheme (3.7.13) using the
result stated in the following proposition (see [50]). Hereafter C' denotes a generic positive

constant independent of h g, h, which takes different values at different incidents.

Proposition 3.1. Let H be a finite dimensional Hilbert space with inner product (-, -) gy and
norm || - ||g. Let Q : H — H be a continuous map. If there exists k > 0 such that,
(Q(w),w)yg > 0,Yw € H with ||w||g = k, then 3 a z € H such that Q(z) = 0 and
Izllg < k.

Remark 3.7. For sake of completeness we recall remark 4.1 in [69] concisely. We define
(Wn, V) = Y ey, (Vwn, Vop) g Yy, v, € Vi, and | - s := (, >*% Then, V} with inner
product (-, -), is a finite dimensional Hilbert space. Also there exists constants k, ky > 0,
such that, Vv, € VP, Erl|onlls < |lonlll < kallvn ]|

Theorem 3.2. (Existence) Let the assumptions on (3.6.1) and (3.8.2) be satisfied. We as-

o~

sume the function £(z) in (3.7.8) is continuous w.r.t z. Then there exists a solution uy, € V,f

solving (3.7.13) and satisfying the inequality
unllZ + 7 ZT 1/ &e(un)(P*)2 V|3 5 < C || fllo, (3.8.8)
EETy

where v, is the constant established in (3.7.10).

Proof. Using Riesz representation theorem, we consider a well-defined mapping @ : V' —
VP defined such that

<Q(wh)7 'Uh>* = Avsg(wha Uh) + Avsc(wh; Wh, Uh) - Fvsg(vh) vUh € V}f) (389)

We show that () is a continuous map on V;”. For arbitrary zj,,y, € V¥, let us denote
X = zp —yp and Q, = Q(z) — Q(yn). Then,

H QXHE - Avsg(zha Qx) - Avsg<yha sz+i4vsc(zh; Zhs Qx) - Avsc(yh; Yn, Qx) . (3810)

(.

~

=I =II

Using (3.6.2) and Theorem 4.1 of [69] , we have a constant C' > 0 such that

I = Avsg(zha Qx) - Avsg(yiu Qx) S C ||Zh - yzH* ||Qx||* (3811)
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NCXt, 1] = Avsc<Zh; Zh; Qx) - Avsc(zh; Yn, Qx)/—i_\Avsc(Zh; Yn, Qx) - Avsc(yh; Yn, sz

-~ -~

2111 :II2

Now, consider

11 = 3 { (&) PPIG Vi T,V Q) 4 guelzn) SE (1= TI) x (T = T1Y) @) |
EE€T, E

Using the continuity of E, Cauchy-Schwarz inequality and (3.7.6) we get

1 < Cllzalle Il 1@l + llgse(zn)lloo.e o Xl 1Ll -
< ClixllILxlls = Cllzn = ynll (1Ll (3.8.12)

Using the generalised Holder’s inequality (with é = 0), continuity of E and Poincaré

inequality we obtain

I, = ) ( [€x(z1) — Ealyn) ] P* IV, H2_1VQ><)
EcT;, E
< Cll€s(zn) = Ealyn)lloe 1T, Viallcoo ITL) 1, VO, lloq

IN

Cllzn = ynlloo 1T Vinllsoo |19kl < Cllzn — ynlls [ Qyllx- (3.8.13)
Substituting the results (3.8.11),(3.8.12),(3.8.13) into (3.8.10) we get
1Q(zr) — Qun)lls = Cllza —ynlls  Vn, yn € V. (3.8.14)

Thus continuity of () is established.

Next we bound F,(-) in (3.7.12) in terms of ||| - ||| as follows,

Fosglvn) = X2 <(f’ 5vn) s + 7 (f’ F ' Hg’lvvh> E>

E€T,
< 5 [Illo.elTonllo.s + 7ol fllo.el B - T2, Von oz ]
E€T,
< 5 Wlor g o+ ey 7l los—2Z VDV en o
Een \IJO h DE
L
< O, \Iflloa llvnll,  (Use Holders’ ineq. & 75 < L_20 ) (3.8.15)

)4

where C, = (1/%g) + (¥o/L3){ max (Be/\/DL).
h
Using a property of SPD matrix P*¢, Lemma 3.3 and (3.8.15), for v, € V)’ we get,
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(Qon)svn)e = Ausg (U, 0n) + Avsc(n; v 08) = Fug(vn) = Ollonll” = Cp [ flloa lonll

m m? ) .
—+/an < — + an?® (choosing
a a

7a

0
o= 5) for the term C, || f1|o.c2 [[|vn | and Remark 3.7 we get,

where = min{1/2, a,, p. }. Using the inequality

22 k26

0 2C"?
@ o) 2 Sl = Z20 Ra > ol - =L B (816

For given f and a constant Cz = %C;, let B = {w, € VP : |lwp|lx > Csllflloq}-
Thus using the estimate (3.8.16) we conclude that (Q(vy,), vp)x > 0 for all v, € B. Now
( thanks to remark 3.7 ) the proposition 3.1 guarantees that there exists u, € V;’ \ B such
that Q(uy,) = 0 and hence implies uy, is a solution for the discrete scheme (3.7.13). Using

(3.8.9), (3.7.10) and (3.8.16), we also note

9 207
(@) une = % Awcluns ) + Sl = 21l (3817
In (3.8.17) using Q(uy,) = 0 we obtain the desired estimate (3.8.8). O

Remark 3.8. The following estimates involving operators Hg, H;Y discussed in [12] will be

used throughout in our analysis.
Forv, € VP any E € Ty,

1T _ Vorllo.e < [Vorllop.  (3.8.18)  [|[V(I —IL) )unllo.e < |Vunllo.s. (3.8.20)
HHgvhHOE S thHO,E- (3819) H([ — Hg)vh”mE S ||UhH0,E- (3821)

Lemma 3.4. Let 7 satisfy (3.8.2). Consider w € H}(Q) with (V - (DVw))|g € L*(E).
Then for all vy, € V', we have a(w,vy) + b(w,vs) < CO(w) |||[v]||, where,

O(w) := { [(1 + ") max (DE+_TE@?E) + maxw + max

Be >]
EcT,  2DY, EeTh(,/—D}é\I/ Il

E€Ty, DY,
(X min{i'ﬁ}HMFE)%} (3.8.22)
3 V; 0’ 0.
EeT, TE DE
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Proof. Consider the term a(w,vy,). Using Cauchy-Schwarz inequality, (3.7.6), (3.8.18),
(3.8.20), Holder’s inequality and definition of ||| - |||, we obtain

ownn) < T (FEIVDVulos VD whHOENEﬁEM DVullos [VDVenllo)

E€Th

5> (@*—”ﬂﬁff)a*n@wuo,Ethuo,E)

&\
. Dp + T2
< () (ZEEE) & VDVulos VDo
EE7-}1 D Ee h

< (1+ ") max

E€T, (
(

P (£ WBYlie) (£ IVDValis)’

EcTy E€Ty,

DE"‘TEB
< (o) s (S5 ) el e
€Th

(3.8.23)

Next we estimate the term b(w,v,). Using triangle inequality and Cauchy-Schwarz in-

equality, we get,

1
buw) < = X 8 T Vullos [Mullor+= X [0w]oslF T Voullos
2 EeTh 2 EeTy,

+ > e[|V -DIL_,Vwloe I8 - 0 Vupllop =T+ L+ 15 (3.8.24)
E€Th

Using (3.8.18), (3.8.19) and Holder’s inequality we get,

; VT g
ho< B VDVl oz < e o) el 3:825)

We derive two distinct bounds for the term 5. First, using (3.8.18), (3.8.19), we have,

EE€Ty, EET,

1
B Bi 2
I, < w ( > VDV < Z= lw)|? uplll. 3.8.26
2 < 2 lwllos NG | nllo.e 2 DY lwllge | Mol ( )
Second, using (3.8.18), (3.8.19), Holder’s inequality and 75 < (¥, /L%) we get

Iy = \/—||w||0E\/§\/—||\/_VUh||0E

EeTy,
1 1
2 TEﬁ 1 2 =~
< (2 —lis)’(x (2 D) IVD Volde)' < (5 Sluls)” Cllul
EeT, TE EcT;, EeT, TE

(3.8.27)
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1

~ U, B2\ ?

where C' = max 20 66 . Thus, combining (3.8.26) and (3.8.27) we obtain,
EeTh \ Ly DY,

' 1 2 1 .
L< (% mln{—;ﬁ—€}|\w||3E>2 max{L, O} [lunll.  (3.8.28)
h TE DE 7
Using (3.8.4), (3.8.18) and Holder’s inequality we get

—
L < 3 VDI Vel 5" Bel  Volos

E€T;,
DgT,

< ¥ PEVDETE | Bul s VDVl

EeTy, E

BeVDETE
< _ . .0.
< (a5 ) Nl (3829
Adding the results in (3.8.23), (3.8.25), (3.8.28) and (3.8.29) proves the claim. ]

Hereafter, we assume each F € 7T, is convex. The following hp-virtual interpolation

estimate ( Lemma 4.4 in [69] ) is useful in our analysis.
Proposition 3.2. For E € T, and v € H}(Q2) N HHYE), £ € N, then there exists a
ur € VP, m = min(p, (), satisfying,

m—41

h
pirl [wlles1,, (3.8.30)

h
lu —urllo,z + ?E lu—urh g <C

Now we prove a convergence result concerning the family of discrete solutions
{u, € VP : Yh >0 and u, satisfies (3.7.13) }.

Theorem 3.3. Consider the assumptions of theorem 3.2 and (3.7.11). Suppose that Wy 0 >
12(Ly + pu*Wy). Let u € HL(Q) be the exact solution of (3.6.1) withu|z € H*™Y(E), p >
¢ > 1forall E € Ty. Then any sequence {uy}y, of solution of (3.7.13) converges strongly
to win H}(Q), that is,

lim ||]u — up|| = 0.
h—0

Proof. Consider the VEM discretisation of (3.6.3) : Find U; € V}” such that

ar(Uy, wy) + az(Uy, wy) + as(Uy, wy) = (f, Mws ), Yws € V¥, (3.8.31)
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where, we define the terms a; (-, ), as(+, -) and a3(-, -), as follows.

ay(v, w) = (DIL)_,Vu, II) V), + > DESE((I IY) v, (I =11y ) w).

EeTy P
0
as(v, w 1/2 (F H Vo, pr>Q—< Vw>Q
as(v, w) = (U(Iv), Mow), + > Wy ST ((I — v, (I — IIO)w).
EeTy,

Let U € V! satisfy problem (3.8.31). Define
e:=u—up=(u—U;)+ (U —up) =m +n.

First let us derive a bound for 7;. Let u; € V}” is the virtual interpolant of u satisfying
(3.8.30), ¥y :=u — uy and ¥y := U; — us. Then we note 1, = v; — ¥J,. Note that both u
and U satisfies (3.8.31). Hence,

ai(m, vn) + b(m, va) + az(u,vs) — az(Uy,vp) =0 Vo, € V). (3.8.32)

Now using Lemma 3.3 with 7z = 0, V E € T, and (3.8.32), we bound ¥, € V}” as follows,

G192l < ai1(Pr —m,02) + az(h — m, ¥2) + az(e, ¥2)
< ay(th,V2) + ax(V, 92) + (asz(u, 92) — az(Uy,9s)) + az(Va, ¥s)
< ay(V1,02) + az(V1,05) + (P(IDu) — C(ILU;), TH).,
+ EEZT o SE (1 = T10)my, (I —T10)d2) + as(da, V). (3.8.33)
i

2
Using Lemma 3.4 with 7z = 0, V E € Ty, and the Young’s inequality %\/571 < moy
a a

an? (with a = 0/2), we get

2 0
a1(191,192) + a2(191,"l92) S C@(ﬁ1> ‘”192|H S EC (@(791))2 + 5‘”192”'2 (3834)

Using Cauchy-Schwarz inequality, Lipschitz continuity of ¥, (3.8.19) and ab < a? + b,

we get

(U(IDu) — \p(HgU;;), Hgﬁz) o

IN

Ly [Imllo.q 192]los
Ly 2 Ly 2
\Dolllmlll + %III%HI : (3.8.35)

IN



Using (3.7.7), (3.8.21), Holder’s inequality and then inequality ab < a® + b* we get

S W SE (I —T0)m, (I —12)05) < > Wopu* Imlloe l192]l0,e

EET, EeTy,
\I} *

< oM

vy

Wo p*
[l + =5 =21l (3:8:36)

Estimating a3 (vs, J,) similar to (3.8.35)-(3.8.36) we get

Ly +Wop*

az(Va,v2) < T

NEA 5 (3.8.37)
Substituting the results (3.8.34)-(3.8.37) into (3.8.33) and simplifying, we obtain

2 Ly + Yo pu*
[102]1* < T4 (—0(9(191))2 L |||771|||2>, (3.8.38)
0 Uy

2V
where T, := 0

= > 0.

Thus, using the estimate (3.8.38), we note

P < 20[0a)l]2 + 2 [[|92][> < T2 X1 (4/0) C(O(W1))> + 2o ||[94]|]*,  (3.8.39)

> 0.

where T, :=

Absorbing the coefficient of ||| ||| into the coefficient of ©(1J);) in (3.8.39), we get
lmlll < CO(u —ur). (3.8.40)

From (3.8.22) with 7z = 0, VE € T}, and using (3.8.30), we obtain

Be
Il < € (Ml =l + sup
EeT;

(S h\/D%/j

Second, we derive a bound for 7. From Lemma 3.3, we obtain

lu=uillos ) < Ch Julesran (3:841)

Olnalll < Avsg(n2,m2) < |Ausg(n2,m2)]
= |a(Uy,m2) — alun,n2) + (U, m2) — b(un, n2) + c(n2,m2)].
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Expanding the terms, we obtain,

Olnlll < la1(Up,m2) + ax(Uy,m2) — alun, n2) + b(un, n2) + (02, 1m2)|

+ |3 e (B0, V0; BT V) 4 SE (1= TIF) Uy, (1= 11Y) )|

EcTy

J/

-~

=1

| % (VK VU, B I Vi) .

E€Ty
N

s

v~

=1

Note that 1, € VP, wy, solves (3.7.13) and U , satisfy the equation (3.8.31). Therefore,

al(U}t7 772) + GZ(U;:7 772) = (f7 H?JUQ)Q - a3<U;:7 772)7 (3842)
a(up, 1m2) + b(un, 1) = Fusg(m2) — c(up, m2) — Asc(un; up,m2).  (3.8.43)

Thus, substituting (3.8.42), (3.8.43) and expanding,

Olllnelll < |(f, H2772)Q — a3(Up, m2) — Fusg(n2) + c(un, n2) + Ase(un; un, m2)|
+‘C(n2,7]2)’ + Il + [2

< JAse(un;un, )| +1 2 7e(f, F~H2_1Vnz)E|+|C(n2,772)|+11+l2
Ee€T;,
+ (Y (I uy) — YALU;), Ms)al + [¥o EEZT Sy (I —=T119) o, (I = T19) 1) . |
h
—In
+1 > & (\If(uh), E?-Hg,lw) | (3.8.44)
EeT;, EJ
I

Using (3.7.11), (3.7.6) and (3.8.21) we obtain

[Ase(unsun,m2)| < C 32 dp(he)lunllie n2lle
EE€T,
< h . 8.4
< Cgea%f%( B)llunllie Inellie (3.8.45)
h2
From (3.8.2) we have, g —— (3.8.46)
p4cinVDE
Using Cauchy-Schwarz’s inequality and (3.8.46), we get,
| me(f. B -1, Vin)sl < 12| fllog lInell (3.8.47)

EcTy,
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Using Cauchy-Schwarz’s inequality, assumption W(0) = 0, Lipschitz continuity of W,
(3.7.7), (3.8.20), (3.8.46) and Holder’s inequality, we obtain

Ly + Wou*
)] < LD ey a2 sl (.849)

N

Applying Cauchy-Schwarz, (3.8.46), (3.7.6), (3.8.21) and Holder’s inequality, we get

L < CR* U va Inallhq- (3.8.49)
Using Cauchy-Schwarz inequality, (3.8.1), (3.8.46) and Holder’s inequality, we have

I < Ch|Uglhalinzllie. (3.8.50)

Proceeding similar to inequality (3.8.48), we obtain

(Ly + You*)

IL+1L <
111y < T,

mall|? + C 1 {lun|lia |72]l1.0- (3.8.51)
Substituting the results (3.8.45), (3.8.47)-(3.8.51) into (3.8.44) and simplifying, we obtain
llmll* < Clnalhef max ¢p (hp)|unlle + W[ fllog + A2 nelhe + (h* + )| Uslha },

where, C = (C'Wy) /(0¥ — 2(Ly + 0p*)) > 0.

Using the equivalence of the norms, ||| - ||| and || - ||1,¢ in the space V)’ we get
limalll < € { maxép(he)lunllie + ¥l fllog + ¥lnelle + (B + W)U}, (3.8.52)

Note that the norms || f|lo.q, [72ll1.0, |unllia, 1Uf]l1q, |u|em1.o are constants and |||u—
unlll < lllmlll + [lIm2ll|- Under the assumption (3.7.11) and letting h — 0 in estimates
(3.8.41) and (3.8.52), we obtain the desired result ]llir% l|lw — ug||| = 0. O

—

3.9 Error Analysis

In this section, we analyse two class of shock-capturing method based on adding isotropic
artificial diffusion and anisotropic artificial diffusion. Error estimates involving rate of con-

vergence is derived for both the SC classes.

We present a hp-polynomial interpolation estimates based on the polynomial mappings
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Hg and H;Y . To this end, let us consider the following polynomial estimate proved in
Lemma 4.2 in [51].

Proposition 3.3. Consider E € T;, and let u € H*™(E). Then for each p € N there exists
a projection operator 117 : H*"Y(E) — P,(E), II¥(u) = u, suchthat0 <1 < s+ 1,

A = min(p, s), .

U — Ur|ip < C#HUHHLE- (3.9.1)

Lemma 3.5. Let p € N. Forall E € T;, and any u € H*™(E), s < p, there exists a
constant C' independent of I/ and u such that

B s

lu = ullo,s < O(f) ullesre, (3.9.2)
hi s

u =T ul g < C(?E) [ (3.9.3)

Proof. By the property of operator Hg and Cauchy-Schwarz inequality, we note that,

Jlu—T0ulf s = (u—T0u, u—T0u) = (u—IDu, u—u,)

E E

< lu—IDullo.e l|u — tzllo.e,

where u, € Pp(E) be as in proposition 3.3. Therefore, |[u — [Dulor < [Ju — ok
Now applying (3.9.1), we get the desired estimate (3.9.2). Following along similar lines
for the term |u — ITY ul1 , we obtain (3.9.3). O

3.9.1 Adding isotropic diffusion

Consider the term A, (+; -, ) in (3.7.8). To add isotropic diffusion, we set the parame-
ters P*¢ and E() in (3.7.8) as follows :

P:=1 and &p(2) = pu(z) [Ry(2)]? (3.9.4)

where R} (z) is as defined in (3.7.9).

In the error analysis we will encounter a term consisting of H' seminorm of the solution
up € V,f of discrete scheme (3.7.13) and the virtual element interpolant u; € V,f' of the
exact solution u of (3.6.1). In the following lemma we state this term and show that it is

uniformly bounded with respect to h.
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Lemma 3.6. Consider the assumptions given in Theorem 3.3 and o be as in (3.7.9). Let
uy € VP be the virtual element interpolant of the exact solution u of (3.6.1) and for E € Ty,

denote Ny = —|u[|1’E
B lun|i,e + op

data and h, such that

. Then there exists a constant C' independent of the problem

< (. 9.
gEnez%/\/'E_C (3.9.5)

Proof. From the Theorem 3.3 and using the equivalence of norms in remark 3.7, we have

that }lllir(l) |u—upl1,0 = 0. Consequently, there exists iy > 0 such that V2 < hy, we obtain,
lu —up|ie < (1/2) |u|1g VE €T, (3.9.6)
For E € T}, and using (3.2) we note,
lurlr g < |ulip+ |u—urli g < Clu|iq. (3.9.7)

Now using the inequality |a| — |b] < |a — b, (3.9.6) and (3.9.7), we obtain

C|U|1’Q < 2C|U|1’Q

|U — uh|17E] +op \u|1,E +0g

Np < <, (3.9.8)
uli,p —
for we note |u|; g is a constant, gll%_l op < |ul1,g + or and hence C'is a constant indepen-
S

dent of the data and h. O]

Theorem 3.4. Let u € HE(Q) N HY(E), ¢ € N be the exact solution of (3.6.1) with
(V -DVu)|g € L*(E) for all E € Ty,. Suppose the stabilization parameter Tg is such that

. R0,

12004

and let Uy (150 —2v*) > 2(64+ 37*)(Lw + p*) be satisfied. For a sufficiently small . > 0,
we suppose that 0 < EE(wh) < kTg, Yw, € V. Then the solution u, € V' of (3.7.13)
with (3.9.4) satisfies,

N —=wunl[|* + 7 X2 Eplun) [u—unlf 5

EcTy

h
<C { O —u)P+ ¥ [m68%+De] (C2) |ullz, » } (3.9.10)
EeT;, p
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where uy € V! is the virtual interpolant of w as in (3.8.30) and constant C' > 0 is dependent
on Lg, Vg, 0, v*, but independent of D, hg.

Proof. Letus denote (; := up —uy and (o := v — uy. Thenu — up, = G — (4.

From lemma 3.3 we obtain

0 ” ‘Cl H |2 + Avsc(“h; Cla Cl) S Avsg(Cla Cl) + Avsc(uh; Cla Cl)
S (a + b + C)(uh — ur, Cl) + Avsc(uh; Up, Cl) - Avsc(uh; ur, Cl)

Adding and substracting A,s,(u, (1), ¢(up, (1) and since uy, is a solution of (3.7.13), we get

O NCll1? 4 Avse(un; €1, C1) < (a+b)(Gos i) + Gy &) + [e(u, G) — e(un, G))]
+ 5 (= L), BT VG ), — Avse(unsur, ). 3.9.11)

EET,

2

0
Using lemma 3.4/ and the inequality Van < m + an? (choosing o = E) we get
«

NG

16 0
(a+6)(GG) < FCO(GR)* + Ll (39.12)
Using Cauchy-Schwarz inequality, (3.7.7), W(0)=0, Lipschitz continuity of ¥, we get

c(C,6) < X {II‘i’(HgCl)—‘i’(O)IIo,EIIHSClllo,EwLM*II(I—H,‘?)QII%,E

E€eTy,
75 | #(15G) = FO)lop | B - T, FCallo )
< Y {Le ||C1||0E+M 16113, + 78 86 Lo G llo.2 1V G0,z }
EeTy
(use (3.8.19), (3.8.21) )
Ly + p* VO f h
< > { \qu Ly, 16115 + OHQHOE BE 2 HVQHO,E}- (use (3.9.9))
EETh 0 wV D
1 1 CinVD_\é’ . . . - . .
Noting p > 1, < v and for hp < , using Holder’s inequality, and then using
Young’s inequality for products, we obtain,
L +u
(¢.G) < TGl + —m@m?. (39.13)
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Now similar to (3.9.13), we obtain the estimate

Ly +p”
Yo

0
c(u, 1) — c(un, G1) < (Ml = unll” + G I1*) + 76 (e = wlllF+ MGH1P)- (3.9.14)

Now we estimate,

I = TE(f—ﬁ(U): F-Hg_val)E
E€T,

— zTE(V-K(Hg_lvu—wwﬁ-(VU—Hg_lvu) (F(u) — T(TM0)), F -1 1v¢1)E

E€Th

Using Cauchy-Schwarz’s inequality and triangle inequality we get

I < Y Jmw ( IV - D (10, Vu — V) o + Bel|Vu — T, Vo
EeTy,

HB(w) = B0 o5 ) v/ BN Vo5
Using (3.8.4), Lipschitz continuity of W and (3.8.19), we get
1< % (VDI - DVulos + yFEsel( - T_)Vullos

EcTy
.
+VToll (1 = )ullo.z ) /25 BslVDVG .
E

Using the inequality ||(/ — II)_,)Vupllor < [[V(I = IIY Jupllo,e ( see [12] ), (3.9.2),
2

0
(3.9.3), Holder’s inequality and the inequality %\/an < m + an? (choosing o = 1—6),
& o

we obtain

1< s (8 BEIVU - T ulos + RV~ T ullos
E€T,

B BV Wollu = ulos ) VDV Gl
< ¥ C\/ﬁﬁE( Y Nullerr,s VDV o,

EeTy,
2 > 3
< (2 0o (8 ults) (T IVDVGlr)
EcTy, E€T,
hg\ 2¢ 0
< C % B E) lull?a,m + oG (3.9.15)
€Th
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Let 1 := |Ayse(un;ur, ¢1)|- Using Cauchy-Schwarz inequality, (3.7.6) and Holder’s in-

equality, we get

I < 3 [1(€lun) P)RT0)_ Vs [|(€(un) P*)2TT)_ Vi o5

EeTh
+ Y guelwn) IV = T Yurllop gucn) 2|V (T = TS o,
EcTy
< (11 2 M€ P Turli e ) (407 5 1) P VG )
EcTy,

=

+(r % gsc<uh>uv<I—H§>ufuaE) (T X gelan) IV =TGR )

EE€Ty, E€Ty,

Using Young’s inequality for products, (3.8.20) and (3.7.6), we get

2 ~ 1
11 < 20 Y (1€ PR Vsl g + guclun) VU =T 3 )

EcTy
3 ~ )
#2702 3 (€ PRI VG 5 + goelun) VU =TGR ).
8 " EeT,
~ 1
< Ty (||<s< WPV Vsl 4 — gaeun) SE((T =05 Jur, (1 = 113 Jur) )
EeTh Oy
1
> () PRI VG 5+ — goolun) SE(U = TG, (1 = TI)G1) )
E€T, Oy
2 3
< §’7* Age(uns ur, ur) + 3 Avse(un; €1, G1). (as Ty < 1) (3.9.16)

4 1
where T := §T2 and Yo := max{l, —} = min{l, a,.} < 1.
Q.

Next we evaluate the term A.(up; ur, ur). Using the definition of A, in (3.7.1) along
with (3.7.2) and (3.9.4), we get

Asc(up;ur,ur) <030 [E(un)|Vurll§ g < 30 pelus) |[Ry(un)? [ur]? g

EETy, Ee€Ty,
’ I|1E
< kY 1| -V -II2 DV, + 8 - Vu, + ¥(u
E%;h EH p—1 h ﬁ h ( h) f”OE Hu ’ E+UE‘2
< /@(maxj\/’E)2 > TEH—V'Hg_lpvuh+F'VUh+\I’(Uh)_f”OE
< /<;(nrlax./\fE)2 > 4TE{H—V-Hg_lpv(uh—ul)ﬂLF'V(Uh_ul)||(2)E
E€Th EET, 7

= VIO DV (s — ) + B - V(ur — u)|2s
H| = V - (I, DVu — DV)|[2 5 + ¥ (up) — \I/(u)HaE} (3.9.17)
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Using triangle inequality and (3.8.4), we get,

4 Y drp|| = VI DV (up — ) + B - T00 V(uy — un)|2
EE€Ty,

<8 3 e {ll - VIO DVG[E, + ERYZAS!
€Th

<8 3 {HDVQH(Z),E—}_TEH?'VCIH(Z),E} < 8l[GIII*. (3.9.18)

EET;,

Similarly, using (3.8.4) and the definition of (5, we get,

4 )| = VT DV (u — )+ B - Viw — w3y <8IGI12  (3.9.19)
EeTh

Using (3.8.4) and (3.9.3), we obtain,

43 el =V - (I, DVu—-Vu)l§; < 3 4D, ,Vu—Vu)llf

EeTy, EeTy,
< X ADE(IVAL - Dullf g
EeTy,
hg 2
< O Dp(—2)" ullZy g (39.20)
EcTy, p

6 v
Using Lipschitz continuity of ¥, noting 0 < 75 < 6_4L_20 and 6 < 1, we have,
T

0
43 e lPlun) =P i < sollu—unlll < fllu—wull?. (3921

EeT, 16

The Lemma 3.6 implies for sufficiently small x > 0, we have

2 0
< —. 9.
“(%nea%fNE) = 64 (3.9.22)
Substituting (3.9.18)-(3.9.22) into (3.9.16), we obtain
0 . 2 2 hi 2 2
o< S NG+ Sy lIGlE +C % Da(E)* full e
E€T,

0

g7 Il = unll[* + gAvscmh; G G)- (3.9.23)

Substituting the estimates (3.9.12), (3.9.13), (3.9.14), (3.9.15) and (3.9.23), into (3.9.11),

we obtain
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L\p‘i‘,u

OGP+ Auelni G G) < ZNGIE + 225 G P + Syl P
16 0 ) Lq,+u o 0 )
+5 COG) + 7 IGIE + (Z55 =+ 15+ 557" ) llu = wll
h 3
+C 3 (7205 + De] (T0) Tl p + GAuse(uni G1.G1):
EE€T, p

Noting that # < 1 and simplifying, we obtain

16 1
G + Avseni 1) < T2 { GOO@D* + 77 I1GIE + T2 e = wnll

hg 20
+C Y (8 +Dp] () s ) (3924)
E€T, p
24, 96(Ly + pu*) + 60V + v ¥,
h = = .
where, I = g oy W — 48(Lg + ) P 96 W,

Let us estimate A, .(up; (2, (2). Using (3.7.11) and (3.8.30), we have

Avsc(uh;CZaCQ) S "Y*Asc(uh;CQaCQ) Z ‘g(uh)KZ’lE

E€Ty,
< X pelun) |Ry(un)? lu—urlf g
E€T;
Using (3.7.2) and (3.9.4), we get
A : 0 F |u |1E
vse(Un; G2, G2) < Kk Y T| =V II, \DVup+ p - Vu, + W (up) — fHOE 2
BeTs ||un|1,5 + oF]

IN

KCy Y 7ol = VT DV, + B - Yy + (ws) — fI12.5,
E<Ty,

where, C, := [ En%g({ |ulr g/ ||unl1,e + okl }]2 Estimating similar to (3.9.17), noting that
€7h

0
6 < 1 and for sufficiently small x > 0, having K C,, < 61 we obtain,

hg

Aveltni 0, G) = g (GNP +NGIP ) +€ 52 D(Z0) i+ gl = nl

Note that, |||u—up|||? < 2|||Ci]][*42]l|Cl)? and Ayse(wn; u—up, u—up) < 2A4s0(un; €1, C1)+
2Avsc(uh; C2> CQ) ThllS,
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H ’u - uhH‘z + Avsc(uh; U — Up, U — Uh) < 2“|<1H ’2 + 2Avs€(uh; Cla Cl) + 2H ’CQHP + 2Avsc<uh; CQ? CQ)

Therefore using (3.9.24), (3.9.25) and substituting (3.9.24) as a bound for [||(1]||?, we get,

=l + Al — 0= )
,Y*
< (2+ 1) 2 { FOOG + TNGIP + 2 llu = wil? }
hg 2 ¥ v*
+C 3 [+ Dr] (F)" [l + 21 + NGl + 35l = wil?
E€Th P 4 32

Using 6 < 1, collecting the coefficients of |||u — u|||* and simplifying, we get

t73|||u_uh|||2 + AUSC(UMU_UMU_Uh)

*

< (2+ D) age@@r+ (2+ 1) (La+1) licl?

h
+C X [ B+ De] ()" ull?, 1 b (3.9.26)
E€eT;, p

3[(80 = 1)Uy — (64 + 39°) (L + )]
2[ (150 — 2v*)Wo — 48(Ly + p*) ]
Using (3.7.11) on Aygc(up;u — up, u — uy) and absorbing the coefficients of |||(z
the coefficient of ©((,) in (3.9.26), we obtain the desired estimate (3.9.10). O

where, J3:= > 0.

[||? into

3.9.2 Adding crosswind-direction diffusion.

Whenever F # 0, the term A,.(+; -, ) adds artificial diffusion in a crosswind direction
with the parameters P and | () in (3.7.8) set as follows :

Fo8 -
P :=1- and &g(2) = op(z) Rp(2), (3.9.27)
EL

where R};(z) is as defined in (3.7.9).

Theorem 3.5. Let u € H}(Q) N HLY(E), ¢ € N be the exact solution of (3.6.1) with
(V- DVu)|g € L*(E) for all E € Ty, Let the stabilization parameter Tg be as in (3.9.9)
and Vo (150 — 2v*) > 2(64 + 3v*)(Ly + ©*) be satisfied. For a sufficiently small k > 0,
we suppose that 0 < og(v,) < k7 Ri(vy) Yuv, € V. Then the solution uy, € VP of
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(3.7.13) with (3.9.27) satisfies,

llw = wnllP + 7 3> Enlun) [I(P*)2 V7 (w = wn) I3

EcTy,
hi\ 2
< c{ew—uwl + ¥ [0 +Ds] (5" Jullt s ) (3928)
E€Th p
where uy € V! is the virtual interpolant of u as in (3.8.30) and constant C' > 0 is dependent

on Lg, Vo, 0, v*, but independent of D, hg.
Proof. The proof is similar to Theorem 3.4. [

Now we prove a convergence result with respect to the ||| - ||| for the discrete scheme
(3.7.13) with either (3.9.4) or (3.9.27), using suitable choice for 7.

Theorem 3.6. Let u € HE(Q) be the solution of (3.6.1) withu € H**Y(E), p > ¢ > 1.
Let u; € V,f satisfy problem (3.7.13) with one of the two variants, (3.9.4) or (3.9.27).
Consider the assumptions on Vo, v* and E £(+) given in either Theorem 3.4 or Theorem

3.5, depending on the SC variants (3.9.4) or (3.9.27), respectively. Additionally we assume

1 B2 .
— < 7 and the choice for Tg as,
TE E
. [ hE hi Yo
- : iU O 3.9.29
TE min {pﬁE ) p4 C?nv,DE 3 L?II } ( )
hEe BE

Let us denote Peclet number Pep := . Then for sufficiently small h, we have

—wllP<cC heN*p (14p 20 4 min{ X, DE pe2 2 3.9.30
e —up|]” < EZr » g1+ Peg+ 2 +min { Xp; DV i} ) lullZirm (3.9:30)
€Thn E

Vo (he)’ L (hg\?
here, X = max { Peg; pcd; 210}, 20 = 0 (22 2= 0 (22
wnere E max €E; P°Cy, E E DE D E \IJO DE D

Proof. Using (3.9.10) or (3.9.28) and (3.8.22), we have,

B 2
lu—up||* < CO@W—u))P*+C 3. (TEﬁj%;‘f‘DE)(?E) [ullf1,

EcTy,

IN

L A% 2)?
Ol =l + (3 min{—: 22 Hllu—wlz)’]
E€T;, TE Vg

2 hey2 2
+C % (78 +Dp) () Nl
E€T;, p

78



Applying (m + n)? < 2(m? + n?), the definition of ||| - ||| and (3.8.30), we get

le—ull? < C| 5 (Delu—wl o+ Sollu— il g + 7 Bplu — wil? )

EeTy,
. 1 52 hE 20
+ 3 m1n{—;D—€}Hu—u1HaE+ > (728t +Dg) <—> HuH?—HE}
E€T;, TE g E€eTy, p

IN

h? h? 1 B2 B\ 2
C (21) + 75 B3] + 2V —l——Emin{—;—E})(—) ul|?, 5
E‘%;’h [ E E BE] pg 0 pg P D}/; D || ||Z+1,E

. 1 .
Note that, from (3.9.29), the definitions of Peg, Zé), we have — = X and using 7 <
TE

h
7E we obtain the desired estimate (3.9.30). ]
PPE

Let us now examine the optimality of (3.9.30) in the cases of convection dominated

or reaction dominated phenomenon. For simplicity we assume D(z) = D. Under the

convection dominated case, ie. Pe > max{Zg), Zg)} > p?c?

mv’

case, ie. min{Zg), Zg)} > Pe > p*c2, from (3.9.30) we get,

mv?

or the reaction dominated

hp 25+1
le—wlP<C Y (22) Nl (3.931)
EcTy,

Thus (3.9.31) implies optimal order of convergence in the ||||||-

3.10 Numerical Experiments

In this section we discuss two benchmark problems highlighting that shock capturing
VEM reduces the oscillations along the layers more efficiently than VEM-SUPG method.

In our simulations we have considered VEM of orders p = 1, 2 and 3. For computational
e _ hg h?,

purpose, we choose the stabilization parameter 75 := min { , —— } and for op ()

. , 2B Il 1P

in (3.9.27), we consider (see [69]) :

2|D
QE(Z) = qo hE max { O, 0 — hERL—*‘(Z) }, (3101)
E

with go € [0.1,1],6 = 0.7and 0 = 10~*in (3.7.9).
For both the examples, we consider 2 = (0,1)2. The discretized nonlinear system of

equations were solved using Newton’s method with zero initial guess. The stopping criteria
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for the iteration is fixed as 10~7. The error with respect to the energy norm ||| - ||| is denoted

by e, and defined as,

e = % (IVDV(u =Tl + Vo lu— w3 + 7 | 8 - V= Tw) 3 )

E€Th

3.10.1 Example 1

We consider D = 10_7,? = (

We use Dirichlet boundary conditions prescribed by u. Note that the solution is dependent
on the diffusion coefficient D and is characterised by an interior layer of O(v/D|in D))

around the line 227 — x5 — 0.25.

We consider regular Voronoi mesh (Fig. 3.8) whose important parameters are presented
in Table 3.2. We compute the numerical solution of this problem using the discrete scheme

(3.7.13) with artificial crosswind-direction diffusion terms given in (3.9.27). Let us take

go = 0.1 in (3.10.1).

Figure 3.8: Sample of regular Voronoi mesh with h=1/5.

NavE

1
function f is defined by choosing the exact solution as u(z, y) := 5 < 1—tanh

2

)T and ¥(u) = u + u® in (3.6.1). The source
21‘1 — T9 — 0.25

h Ng | dof p=1 | dof p=2 | dof p=3
1/5 80 162 483 884
1/10 | 300 601 1801 3301
1/20 | 1300 | 2599 7797 14295
1/40 | 5000 | 9998 29995 | 54992
1/80 | 24000 | 47959 | 143917 | 263875

Table 3.2: Regular Voronoi mesh parameters with mesh diameter (h), number of elements

(NEg) and degrees of freedom (dof) for VEM orders p=1,2 and 3.

The errors e;, obtained for the regular Voronoi mesh for VEM orders p = 1,2 and 3,
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along with the rate of convergence is given in Table 3.3. Since the solution « is dependent

on D, the optimal order of convergence will be obtained only for very small h.

p=1 p=2 p=3

h e roc e roc e roc
1/5 | 7.36e™2 % |924e 2 % |[7.38e%
1/10 | 6.31e72 0.22 | 8.26e72 0.16 | 4.95¢72 0.57
1/20 | 4.47¢72 049 | 6.19¢ 2 0.41 | 3.35¢72 0.56
1/40 | 3.68¢72 0.28 | 4.35¢72 0.51 | 291e 2 0.21
1/80 | 2.53¢72 0.54 | 2.66e=2 0.71 | 1.57¢72 0.89

Table 3.3: Error e;, wrt ||| - ||| and the rate of convergence (roc).

In order to show the effect of adding shock capturing stabilization term in the formula-
tion, we compare the cross-sectional graph of the SUPG stabilized VEM method with and
without shock capturing term. In Figure 3.9-3.10, we consider the cross-section along the

line x|+ 21’2 =1.

1.2 T T T T T T T T T 1.2 T T T T T T T T T 1.2

1 1 1

0.8 0.8 0.8

0.6 06 06

0.4 0.4 0.4

0.2 0.2 0.2

0 0 0

-0.2 -0.2 -0.2
0 0.1 02 03 04 05 06 07 08 0.9 1 0 0.1 02 03 04 05 06 07 08 0.9 1 0 0.1 02 03 04 05 06 07 08 0.9 1
X X X

(@p=1 (b)p=2 ©p=3

1.2 T T T T T T T T T 1.2 T T T T T T T T T 1.2

1r 1r 1r

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

0 0 0

-0.2 -0.2 -0.2
0 0.1 02 03 04 05 06 07 08 0.9 1 0 0.1 02 03 04 05 06 07 08 0.9 1 0 0.1 02 03 04 05 06 07 08 09 1
X X X

@p=1 (e)p=2 Hp=3

Figure 3.9: Cross-section graph : VEM-SUPG (top) and VEM-SUPG+SC (bottom) for
regular Voronoi mesh with h=1/20.
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Figure 3.10: Cross-section graph : VEM-SUPG+SC for regular Voronoi mesh with
h=1/80.

From Figure 3.9 we infer that the oscillations are effectively damped effectively by the
Shock capturing VEM of order greater than one. We can also observe that the quality of
the numerical solution increase with increase in VEM order p. In Figure 3.10 we see that

for h = 1/80, the oscillations are completely removed for VEM orders p = 2 and 3.

3.10.2 Example 2

We consider D = 1076, F(a:, y) = (—y,2)", ¥(u) = u* and f = 0. The discontinu-

ous boundary data is prescribed as follows :

1 if1/3<x<2/3,y=0

0 ifzel0,1/3)N(2/3,1], y=0

—0 ifz=1yel01] (3.10.2)
0
0

u(z,
u(z,y) = ifzel0,1],y=1
Ou(z,y) :

. ifz=0,ye]|0,1],

where n is the unit outward normal. We use the discrete scheme (3.7.13) with artificial
crosswind-direction diffusion terms given in (3.9.27) and gy = 0.2 in (3.10.1) to compute
the numerical solution. The solution u possess two interior characteristic layers beginning
from the line joining the points (1/3,0) and (2/3,0).

We consider three different meshes namely, distorted squares, hexagons and non-convex
polygons. A representative of each mesh is shown in Figure 3.11. In Table 3.4 we present

details of some useful mesh parameters.
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(a) Distorted squares.

(b) Hexagons.

(c) Non-convex polygons.

Figure 3.11: Samples of meshes with diameter A = 1/5.

Mesh h Npg | dof p=1 | dof p=2 | dof p=3
Distorted 1/16 | 784 841 3249 6441
squares 1/32 | 3136 | 3249 12769 | 25425
Hexagons 1/16 | 1681 | 3364 10089 | 18495

1/32 | 6561 | 13124 | 39369 | 72175
Non-convex 1/16 | 1600 | 4801 12801 | 22401
polygons 1/32 | 6400 | 19201 | 51201 | 89601

Table 3.4: Mesh parameters with degrees of freedom (dof) and number of elements (/Vg).

We study the performance of our shock capturing VEM method by comparing with
SUPG stablised VEM on the cross-section of the outflow boundary line z = 0. In Figure
3.12-3.13 presents the outflow boundary cross-section of the numerical solution for dis-

torted square mesh with » = 1/16 and h = 1/32, respectively, for VEM order p = 1,2, 3.

©p=3

@p=1 (b)p=2

Figure 3.12: Cross-section graph : VEM-SUPG (red broken line) VEM-SUPG+SC (blue
line) for distorted square mesh with h=1/16.
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Figure 3.13: Cross-section graph : VEM-SUPG (red broken line) VEM-SUPG+SC (blue
line) for distorted square mesh with h=1/32.

SUPG SUPG-SC

o o 0 0

@p=3 (b)yp=3

Figure 3.14: A comparison of surface plot of numerical solution obtained without- and
with- shock cpaturing for distoted square mesh with h = 1/32 and VEM order p=3.

Similarly, Figure 3.15-3.16 represents the outflow boundary cross-section of the numer-
ical solution for hexagonal mesh with h = 1/16 and h = 1/32, respectively, for VEM order
p = 1,2 and 3. Again, Figure 3.17-3.18 represents the outflow boundary cross-section of
the numerical solution for non-convex mesh with 4 = 1/16 and h = 1/32, respectively, for
VEM order p = 1,2 and 3.
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Figure 3.15: Cross-section graph : VEM-SUPG (red broken line) VEM-SUPG+SC (blue
line) for hexagonal mesh with h=1/16.
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Figure 3.16: Cross-section graph : VEM-SUPG (red broken line) VEM-SUPG+SC (blue
line) for hexagonal mesh with h=1/32.
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Figure 3.17: Cross-section graph : VEM-SUPG (red broken line) VEM-SUPG+SC (blue
line) for non-convex mesh with h=1/16.
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Figure 3.18: Cross-section graph : VEM-SUPG (red broken line) VEM-SUPG+SC (blue
line) for non-convex mesh with h=1/32.
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Figure 3.19: A comparison of surface plot of numerical solution obtained without- and
with- shock cpaturing for hexagonl mesh with A = 1/32 and VEM order p=3.

In Figures 3.14,3.19 and 3.20, we present the surface plot of the numerical solution
obtained from SUPG stabilized VEM, and shock capturing VEM of order p = 3 for dif-
ferent meshes such as distorted squares, hexagons and non-convex polygons, respectively,
for h = 1/32. Clearly, we see the efficiency of the shock-capturing term in reducing the
nonphysical oscillations in the numerical solution on the three meshes considered.

Across all meshes taken into consideration, from Figures 3.12-3.13, 3.15-3.16, and
3.17-3.18, we infer the following about the effectiveness of shock-capturing stabilization
term in (3.7.13). In the case of linear VEM, there is negligible reduction of spurious os-

cillations in the numerical solution. But in higher order VEM, the shock-capturing term
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effectively diminishes the nonphysical oscillation of the numerical solution in the layer re-
gions. Also, in a particular higher order VEM, reducing the diameter & produces highly

qualitative numerical solution.

SUPG SUPG-SC

0.8 0.8

@p=3 (b)p=3

Figure 3.20: A comparison of surface plot of numerical solution obtained without- and
with- shock capturing for non-convex mesh with A = 1/32 and VEM order p=3.

3.11 Summary

This chapter has studied the shock-capturing stabilized VEM for the convection-diffusion-
reaction equation. As a motivation, we formulated a well-posed shock capturing stabi-
lized discrete scheme approximating the linear convection-diffusion-reaction equation in
the VEM context. Numerical experiments conducted on linear problems with unknown so-
lutions having discontinuous boundary data revealed the efficiency of shock-capturing tech-
nique over the SUPG method on second-order VEM for different types of meshes. Since
the exact solution was not known, a comparison of the cross-section of the corresponding
first-order FEM and VEM solution on triangular mesh exhibit similar structures. We have
devised a shock-capturing stabilization of the VEM for a semilinear convection-diffusion-
reaction equation with this boosting. An extensive theoretical analysis of the approximate
scheme was conducted. We have shown the well-posedness of the formulation and its error
estimates with the convergence rate. We laid the conditions for choosing optimal SUPG
parameters. In the end, we performed two numerical experiments to validate the theoret-

ical findings. Both the experiments show the effectiveness of the shock-capturing VEM
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compared with the VEM-SUPG method.
For first-order VEM, the shock-capturing method was ineffective for the linear and non-
linear problems. We highlight that the shock-capturing technique combined with higher-

order VEM efficiently damps the spurious oscillations in the numerical solution.
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Chapter 4

Virtual element method for the quasilin-
ear convection-diffusion-reaction equation

on polygonal meshes

The quasilinear convection-diffusion equation arises in diverse areas such as in plasma
physics describing movement of ions [71], the Burgers equation related to turbulence the-
ory [72], gas and oil extractions, fibre optics and aerodynamic theory [73]. In order to re-
duce the spurious oscillations appearing in the numerical solution of convection dominated
problem, we use the streamline upwind Petrov-Galerkin method for stabilizing the virtual
element method. We know that quasilinear convection-diffusion equations are closely re-
lated to the Navier-Strokes equation. In many practical applications, the solution of these
equations are isolated, that is, the solution is unique upto a neighbourhood. We call this
collection of solutions in a neighbourhood as a branch of solutions. This chapter studies the
VEM approximation of branch of nonsingular solution of quasilinear convection-diffusion-
reaction equation. The analysis is based on a variant of broader theory developed for a class
of nonlinear problems by Brezzi et. al. [74].

The main feature of virtual element space is that the associated local degrees of free-
dom uniquely determines the functions in the interior and on the boundary of each element.
Since the non-polynomial component of the functions are not known explicitly, neither we
have an approximate expression for the basis function nor we can use quadrature formula to
compute the discrete scheme. Thus, we must take special care in devising the discrete oper-
ators in the VEM scheme. In the VEM context, we use polynomial projection operators on
the functions to split it into its polynomial and non-polynomial constituents, and the opera-
tor terms are evaluated using only the degrees of freedom such that we obtain exact results

when one of the two entries is a polynomial, and for other occurrences we produce values of
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only right order of magnitude and stability property. Hence to ensure computablity, we use
projection operators appropriately in the discrete formulation. Moreover, to approximate
the nonlinear convective coefficient and reaction function, we incorporate the projection
operators and add the necessary VEM stabilizers. From the analysis, we note that for the
VEM stabilizers supporting the nonlinear reaction function, it is sufficient to provide a
linear coefficient, whereas in the approximation involving nonlinear convective function,
the coefficient of the VEM stabilizer remained nonlinear. In the error analysis section, we
show that the use of polynomial projection operators and the added VEM stabilizers do not

affect the rate of convergence.

A challenge in numerical simulation of quasilinear problem is the execution of New-
ton’s iterative method which becomes computationally expensive on very fine mesh. In
two-grid method, we solve the system with two meshes of different mesh diameters. The
nonlinear system is solved on a much coarser grid. Then, in the fine grid, only a few
number (say, one or two) of nonlinear iterations are performed with the coarse grid solu-
tion as the initial guess. Various adaptations of two-grid methods have been successfully
applied to many problems such as quasilinear elliptic equation [75], nonlinear hyperbolic
equation [76], nonlinear parabolic integro-differential equations [77] and mixed FEM for
Darcy-Forchheimer model [78]. Hence in the numerical simulations, we consider using the

two-grid method proposed in [79] for solving the discrete formulation.

4.1 The continuous problem

Consider the model problem,

L(u):==V-(eVu)+B(u) - Vu+r(u) = 0 in €, 4.1.1)

u = 0 on T,

where ) is a bounded domain in R? with Lipschitz continuous boundary I'. We assume the
parameter € € RT where 0 < ¢y < € < ¢,, the nonlinear coefficients 3(-) = (51(+), B2(+))
with 3; : R =+ R, j =1,2and r : R — R are twice differentiable functions. Let 0,,(-) and

Ouu(+) denote the first and second order derivatives with respect to u, respectively.

Assumption 4.1. Furthermore, we assume, the nonlinear function r such that 7(0) = 0,
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and there exists a monotonically increasing function @ : R™ — R satisfying

j§2 [185(8)] + 10 B;(5)] + 1 B;(s)]] + Idiv B(s)]
()| 4 [0ur(s)] + [0 r(s) < Q(Js]) Vs €R.  (4.1.2)

4.1.1 Notation

Let w C R? be a measurable set. The usual Lebesgue space L?(w) is endowed with
L? inner product denoted by (-, -),, and norm by || - ||o.,, respectively. L°> norm denoted
by || - ||cow- For the Sobolev space, H*(w),s € N, we denote the seminorm by | - |,
and norm by || - ||sw- (-, ) denotes the duality pairing between a Banach space X; and its
corresponding dual space X5. Let L(X5, X;) be the space of bounded linear operator from
X, into X5, with standard operator norm || - ||1(x, x,). We omit the index w whenever the

domain is evident.

4.1.2 The variational formulation of (4.1.1)
Findu € H}(Q) N L>(Q) such that

(L(u), v) == €(Vu,Vu)g+ (B(u) - Vu,v)q + (r(u),v)q =0 Yo € Hy(Q). (4.1.3)

We reformulate (4.1.3) to align with the abstract framework of Brezzi et.al [74, 80].
Let us denote j; = 61_1, Lo = € 1 and consider the compact interval [ = [uq, po] C R.
Then, for any € € [ey, €;], we have e} € I. We know that [81], there exists an operator
My : I x H}(Q) — H'(Q) such that [81]:

(Mo(p,w), v) == p[(B(w) - Vw,v)q + (r(w),v)q] Vv e Hy(Q), (4.1.4)
and a bounded linear inverse Laplace operator T : H~1(Q) — Hj () solving
(V(T(9)), Vv)g = (g, v) Vv e Hy(Q). (4.1.5)

Let 1 = e '. Using the operators in (4.1.4) and (4.1.5), the variational form (4.1.3) is

rewritten as

findu € Hg(Q2) N L>(Q), such that
F(p,u) :=u+ TMy(u,u) =0.

(4.1.6)
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In addition to the supposition (4.1.2), we assume the following (see [81]).

Assumption 4.2. There exists a branch B := {(p,u,) : p €L, u, € H}(Q) N L>(Q) } of

nonsingular solutions of (4.1.6), in the sense that :
forall p € I, F(p, u,) =0,
the function U : I — Hj(Q) s.t. U(u) = uy, is continuous , and
forall u € I, D F(p, u,) is an isomorphism on H () N L (1),
where D F(-, z) is the Fréchet derivative of operator F' with respect to z.

Assumption 4.3. The set containing H' and L> norms of solutions w,, in branch B is

uniformly bounded, i.e., 3 A > 0 such that ma)xB{ luullies upllon } < A
Uy )€

Assumption 4.4. The map o : W2P(Q) N HY(Q) — LP(Q2) defined by ¢(w) = Aw is an
isomorphism for all p € [1, 2].

Then (4.1.2), assumptions 4.2 and 4.4 implies any solution u satisfying the problem
(4.1.6) belongs to H2(2) N HY(Q) N L>°(QY) (see Lemma 2.1 in [81]).

Remark 4.1. Let X = H}(Q) N H2(Q) and Y = L?(f2). Using assumption 4.4, we also
note T € L(Y, X).

4.1.3 VEM Spaces

Consider {75, } >0 to be a family of polygonal partitioning of € satisfying the assump-
tion 1.1 stated in Chapter 1. In our analysis, we use the polynomial projection operators
HZ, Hg and Hg defined in (1.3.1), (1.3.2) and (1.3.3), respectively. For approximation we

consider the global virtual element space V' given in (1.3.5).

4.2 VEM formulation

It is a well known fact that the problem (4.1.1) is singularly perturbed, and the dis-
cretisation of (4.1.3) yields numerical solutions with non-physical oscillations. To alleviate
this, we add the streamline-upwind Petrov-Galerkin (SUPG) stabilization in the discrete

formulation. The SUPG stabilized discrete formulation is

find u;, € V}? such that

a(up, vn) + b({ wun, up }; un, vi) + c(un; un, v) + d(up; up, vp) =0 Vo € VP(Q)
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where,

i) == 32 €(Vun, Vo). 4.2.1)
b({ wh, 20 5 un, vn) = E;Th (B(wn) - Vuy, 05 B(zn) - Vup ) g, (4.2.2)
c(wp; up, vp) == E%;’h (7(un) + B(wy) - Vun, v ) and  (4.2.3)
d(zp; up, vp) = E;Th (=V-eIl, \Vup +r(un), 65 8(z1) - Vun ) . (4.2.4)

The variable d is the local stabilization parameter usually dependent on h . The functions
in the VEM space V} are only implicitly known through their degrees of freedom. Hence
we need to suitably modify the terms in (4.2.1)-(4.2.4) so that they are computable using

only the degrees of freedom.

To this end, we consider a symmetric bilinear form S : V;¥ x V¥ — R such that, 3

constants o, o > 0 independent of / and £ satisfying
o, (Vop, Vo) g < SE(vh,vh) < o (Vup, Vop) g Y, € ker HZ. 4.2.5)

Using the polynomial projection operators 11, Hg, Hg_l, and Sg, we define the VEM

computable terms as follows :

an(up,vp) == > (€I _;Vuy, ID_ Vo) g + e Se((I — I Jup, (I — I )v,14.2.6)
EeTh

bh({wh, Zh} , Up, Uh) = Z |: (/B(ngh> . H271Vuh, (SE ﬁ(ngh) . Hgflvvh)E
EcTy,

#0582 Sp((1 = T Jun, (1 = T Juw) |, 427)

en(wnsun, o) == > (r(up) + BII%wy) - TI)_; Vuy, Hgvh)E : (4.2.8)
E€Th
dh(Zh; Up,, ’Uh) = Z (—V : eﬂg_IVuh -+ T(ngh), (SE ﬁ(HgZh) : Hg_1Vvh)E(429)

E€Ty

The parameter S in (4.2.7) is chosen guaranteeing two positive constants g, ©* indepen-
dent of h and E such that for all wy, 25, v, € V/F,

o« b({wn, 21} vn, vn) < bn({wn, 20} vn,vn) < 9" 0({wh, 20} 5 Un, v1), (4.2.10)
and 8§ < Q(N). (4.2.11)

Similarly, for sufficiently small constants C;, Cy ( independent of €, h) and for each £ €
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T, the choice for dy satisfies,

(i) 0<edp <Cih3, (ii) 6p < Cohg. (4.2.12)
Let us denote,
A{wn, 21} 5 up, vn) = an(un, vp) + bn({wn, 21} un, vn) + cp(wp; up, vp) + di(2n; up, vp).
A computable SUPG stabilized virtual element discretisation (VEM-SUPG) of (4.1.1) is,

find u;, € V)Y such that
A({un, un} ;s up, vp) =0 Yo, € V).

(4.2.13)

Next, we re-write (4.2.13) as a discrete approximation to (4.1.6) and validate the ex-
istence of a branch of discrete solution which approximates the branch B of non-singular
solutions given in assumption 4.2.

In the sequel, we denote by C' a generic positive constant independent of hg, h, k and

1, which takes different values at different instances.
Lemma 4.1. For ¢y, wy, € H} () N L*°(Q) and v;, € V¥, we define

o (dn; wn, ) = [ bn({wn, o} s wh, vi) + cn(wrs wi, v) + di(dn; wa, va) |-

Under the conditions (4.1.2), assumption 4.2 and (4.2.12), we have that o, (¢p; wp, ) is a

bounded linear functional on V}\.

Proof. Given ¢y, wy, € L*(Q2) implies that 3 N > 0 such that ||¢p||cc.q, [|[Wn|leca < N.
Let Ky := |bp({wp, ¢n};wp,vs)|. Using the conditions stated in lemma, (4.2.11) and

Cauchy-Schwarz inequality, we have

K < (Q(N))zEZT [0 ITX)_, Vwn || [ITT)_, Vol
€/h

+op o |(I =TI, ) Vunlp || (1 =TI, ) Vsl |
< Ch(l+ay) Y, [[Vwplle|Vur|le  (use (4.2.12))

EeT,
1 1
< Ch(1+ay) < > HthH%) ’ < > ||Vvh|\2E> ®  (using Hélder’s inequality)
EeTy, EeTy,
< Ch (1 + a*) |wh|1,Q |'Uh|17Q. 4.2.14)
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Let K5 := | ¢, (wp; wp, vp) |- Similarly, we have

Ky < C 3 QN) [IM0ule + ITT)_y Vs g [[TT5v, | |
EeT,

< C ( 1+ |wh|179) lvn|1.0 (using Poincar¢ inequality).  (4.2.15)
Let K3 := | dp(¢n; wp, vp) |. Proceeding similar to the above derivation, we get,

Ky < % Q(N)dp | IV - T eV p I, Tonll + Q) TTS_, Vol
EcTy

< C % bt G Op e T Fun + b | ITLS_, Vo

Ee€Ty,
< C Y hg(|Vwlle +1) [[Von||e (using (4.2.12))
EcTy,
< Ch(|wnli,o+1) |vnle- (4.2.16)

From the estimates (4.2.14)-(4.2.16), we infer that o, (¢y,; wy, +) is a bounded linear func-

tional on V! O

Using 03,(+;+,+) in Lemma 4.1, we define a continuous operator M, : I x (H(£2) N
L>(Q)) — H~1() such that

( My (g, wp), vp ) := op(wp;wp,vp) Yo, € VP (4.2.17)

Next, we consider a bounded linear discrete inverse Laplace operator T, : H1(Q) — V/

solving
an(Trg,vn) =€(g,vp) Yo, € VP (4.2.18)
Using the operators in (4.2.17) and (4.2.18), we reformulate (4.2.13) equivalently as,

find u, € V) such that
(4.2.19)

Fn(p,up) :=up + Tp My (p, up) = 0.

Remark 4.2. LetY;, =Y, where Y is as in remark 4.1. We know H(Q2) C Y. It holds
Ty, € L(Y,, V}P). Let || - || be the norm on Y}, and is defined as

o= sup L2

. (4.2.20)
07£Zh€‘/;iC |Zh | 1
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Remark 4.3. Using (4.1.2), assumptions 4.2-4.4 and (4.2.12), we prove the existence and
uniqueness of a branch of discrete solutions to (4.2.19) in a neighbourhood of B by utilizing
Theorem 3.8 (1V, sec.3.4) in [80].

4.3 A Priori estimates

In this section, we state the inverse inequality and interpolation estimates that are useful
for our estimation. Then, we prove the auxiliary results that will be used in our error anal-
ysis. Hereafter, we assume E is convex VE € T, and Vu € I, u, € H*"(Q), s € N. For
simplicity we denote by, ({¢n, &1} ; wp, vy,) by the notation by, (¢y; wy,, vy,). For convenience,
we shall denote u := u, and uy := uy .

We recall the inverse inequality in [31] i.e., For any w;, € V,f’ and VE € T,, da
constant ¢;,, > 0 (independent of h, E, wy) such that

IV - eVwpllz < Cino hg" |le V| 5 4.3.1)

The following local polynomial interpolation estimates (see Lemma 5.1 in [12]) are con-
sidered i.e., for all £ € Tj, and any ¢ € H*(E),

[ =Tl < Chy ™ [Ulse m,s e NU{0}, m<s<k+1. (432)
[ = I Y ||mp < Ch ™ [Ylsp ms€N, m<s<k+1, s>1. (433)

The virtual interpolation estimate below is found in [13]. For 0 < s < k and for every
Y € H'5(Q), there exists ¢; € V)P satisfying

v — ¥rlla + A —¥rlia < Ch™ |1 sq- (4.3.4)

The results that appear in subsequent remarks will be used throughout the analysis.

Remark 4.4. On a bounded Lipschitz domain D € R? we have the compact Sobolev em-
bedding H'(D) < LP(D), 2 < p < oo. That is, for any w € H'(D) we have

|wllzry < Cllwip. (4.3.5)
Then for ng € P.(F) C H'(FE) and using the estimates (4.3.5), ((2.44) in [82] ) we have
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Remark 4.5. Let (-,u) € B and u; be the virtual interpolant of w as in (4.3.4). The following
estimate holds for each £ € T},:

Tull ey < C (hg' Tull + [Mulyp + he|lulyr)  (use (2.8,[82]))
< C (hg'llullg + |ul,e + he|luloz)  (use (2.44,[82]))
< C(2luli,p + cmoluli,e)  (use Poincaré, (lemma 10,[49]), (2.44,[82]) )
< Clug <CA ( use assumption 3 ) 4.3.7)
Similarly,
Murl| sy < C (hi' Wurlle + Murl, e + he[urle s )
< C(hg'(lur — ulle + llullg) + (1 + cino) (Jur = ul1 + [ul,5) )
< C(3+4 ¢inv) |ul1,g  (use Poincaré, (lemma 10,[49]), (2.44,[82]), (4.3.4) )
< Cluhg <CA (use assumption 3 ) (4.3.8)

Lemma 4.2. For any (-,u) € B and its virtual interpolant u; € V', using (4.1.2), assump-
tions 4.2-4.4 and (4.2.12)), we obtain,

pwop(ur;ur,vp) — wb(u;u,vp) < Crh’|uplig Yoy, € th, (4.3.9)

where €1 := 15[ Q(CA) > C [ |ul1.0 + 38 + & [ul20] |u|i4s.0-

Proof. Let Ky := pby(ur;ur,vp) — pb(u;u,vy). Then,

Ki=p Y { (B(1%uy) - T Vuy, 65 B(IM%u) - TI0_ V),
EeTy,

— (B(u) - Vu, 6 B(w) - Vur)y |
+u Y 0p82Se((I — 1Y )ur, (I — IV )vy) = Kiy + Kys. (4.3.10)

EcTy

Let us define,

K=Y { ([B(1%) + B(u)] - T Vuy, 65 B(I1%u;) - T2, Vs, ),
+ (B(Qu) - [TT)_,Vu + Vu], 65 B(00u;) - T, Vo),
+ (B(u) - Vu, 85 [B(u) + B(u)] - T2, Vuy), }
Adding and subtracting K to K, in (4.3.10) we get,
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Ko = pu Y { ((B(M%uy) — B(Mu) ) - T2, Vs, 85 B(TM0u;) - IO Vo, ),

+ ((BIu) — B(u) ) - TI)_Vuy, 65 B(Iu;) - I 1Vvh)
u) - [Hg_IV(u[ —u) + (HO Vu — Vu)] op ,6( ur) - 11 1Vvh)
w) - Vu, 0 [ (B(Mur) — B(Iu)) + (B(Lu) — B(u)) | -TL_ Vv, ) ,
w) - Vu, 65 B(u) - [T, Vo, — Vo] ), } gt (43.11)

Using mean value theorem (MVT), remark 4.5, (4.1.2), Cauchy-Schwarz inequality, gen-
eralised Holder’s inequality, (4.3.6) and (4.3.5) we get

u < o> [QCN] 0k [IT0(ur — u)|| e + IT0w — ullzacmy | lurlie | T_ Vou | oe)

EeTy,
< Y [QCNPog [lur — ullve + [T — ully g | |urlie [T Vou|e
BeTy,
< X [QCNP 6 [Nlur — ullip + C b Julis e | |urli,e hE [on]1,e (use (4.3.2), (2.6,(82]) )
EeT,
< p[QCN)? [lur — ullio + C B Julisn ] Jurliolvnlie (use (4.2.12) & Holder’s ineq. )
< uC[QICNP R |uliysn [ulialvnia.  (use (4.3.4)) (4.3.12)

Using remark 4.5, (4.1.2), (4.3.2), Holder’s inequality and (4.3.4), we get,

Lo ,uE%:T [Q(CN)]? 6k [|u1 —ul g+ HHg,qu — VuHE] |onl1.e
g
“E;T [QCN)? 6k [|ur — ulip + TN u —ul1,p] Joal1,e (use (5.22,[12]))
MEEZT [Q(CN)]?or [|UI —ul1,p + ChSE|U|1+s,E] R |1,m
pCQICN G h* [ulits0 lvnh,0- (4.3.13)

Using MVT, remark 4.5, (4.1.2), Cauchy-Schwarz inequality, generalised Holder’s inequal-
ity and (4.3.6), we get,

13 < MEZT [Q(CN)2 0p | Vul roey [ IT0(ur — w)|| sy + [T — ul|zagpy | |TI)_, Vou| &
€/
< w Y [QECNPop|Vullie [llur — ulle + Tu — ullv g ] |va|ie
FeTy,
< X [QICN)P 6 |ulak [ lur — ulli,e + C hy |uliyse | [onl1e
EeTh
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Applying Holder’s inequality (4.3.4), we get
i3 < pC[Q(CN)]? 6 |ulaoh® [ulitsa [vnlia. (use) (4.3.14)
Next we estimate,

o= p oy (B Vu, ogB(u) - [Hgflvvh — Vo, ] )E

EET;,

< QWP Y (Vu, 6g [II) Vo, — Vo, ] ),
E€T

= plQWP X (Vu—TI) Vu, 65Vu,),
EET,

< p[QN]? Y Ju— 1Y uly g 0p |vpl1,e (use Cauchy-Schwarz ineq., (5.22, [12]))
EeTh

< p [Q(/\)]Q Z C hy |U’1+57E 0p ‘Uh|1,E (use (4.3.3))
E€T

< w[QW)PPSCR |uliysq |vnlia.  (use Hélder’s inequality ) (4.3.15)

Using (4.2.11) and (4.2.5) we obtain

Kio < p Y dp[QN)) |ur — HZ“I|1,E lop, — vahh,E.
E€T,

Note the inequality,

‘UI_HZUI’LE S \u;—u!LE—i-]u—HZuh,E—i—\HZ(u—u])\LE

2 |ur — ul,p + [u— I uly g. (4.3.16)

A

Thus K12 S % Z 6E [Q(/\)]Q [2 |UI — U‘LE + ]u — HZU|1,E] |Uh — H;Yvhh,E
E€Ty,
S 1% Z (SE [Q()\)]Q [2 |U] — U|17E + Ch% |U|1+37E] |Uh|1,E (USG (433) )
EeTy,
< wd[QWP[2)ur — ulig + Ch® |ulirso] lvnlia  (use Holder’s ineq. )
< wd[QN)PC R Julissalvnlia- (use (4.3.4)) (4.3.17)

Combining the results (4.3.12), (4.3.13), (4.3.14), (4.3.15), and (4.3.17) we get the
required estimate (4.3.9). L]

Lemma 4.3. For any (-,u) € B and its virtual interpolant u; € V', using (4.1.2), assump-
tions 4.2-4.4 and (4.2.12)), we obtain,
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pen(ur;ur,vp) — pe(u;u,vy) < Coh® uplig Y, € VF, (4.3.18)

where Cy 1= iy Q(CA) C'[|ul1.0 + h + 1] |u|i+s0-

Proof. Let us denote Ky := p [ch(uf; ur,vp) — c(u; u,vh)}. We have,

K, = MEZF [(B(MSup) - II)_ Vuy, v, ) g — (B(u) - Vu, vy ) |

-I—/LE;_ [(r(0ur), 10 ) — (r(u),vn)E ] = Ko + Kao.

Adding and subtracting the following terms to Ko
py ([B(Iu) +B(u)] - T, Vu + B(u) - [II)_,Vu — Vu], vy ), we get

EcTy,

Ko = o 32 { ([(B(ur) = BIGw)) + (B(ILw) = B))] 1L, Vur, Wun ),

E€7—h
+ (B(u) - [TI)_V(ur —u) + II)_,Vu — Vu)], o),
+ (B(u) - Vu, Tow, —vn) , } — 4Dy 4 s, (4.3.19)

Using MVT, remark 4.5, (4.1.2), Cauchy-Schwarz inequality, generalised Holder’s inequal-
ity, (4.3.6) and (4.3.5), we get,

h < ME;T}L Q(ON) [T (ur — w)lpomy + 1T — ull ogm) | ITL)_y Vur|| & | Ton | 22 ce)
< ME;F QCN) [llur — ullrp + Mpu = ullyp ] Jurh.p o1,z
h
< puQ(CN) [lur — ullio+ Ch° |uliysal lurlialvnlia  (use (4.3.2), Holder’s ineq. )
< uCOQCON B [ulisse [ulie [onlia.  (use @3.4)) (4.3.20)

Using assumption 4.3, (4.1.2) and Cauchy-Schwarz inequality, we get,

b < p Y QCN) [Jur —ulie + |1, Vu — Vullg] vl e
EET,
S 2 Z Q(C/\) HU] - U‘I,E + ’HZU - u|1’E] ||UhHE (USC ( 522,[12] ) )
EET,
S 12 Z Q(C/\) HU] — U‘I,E + ChsE |u|1+57E] “UhHE (USC (433) )
EET,
< pQ(CA) Ch |ufi4sa|vnl1.a- (use (4.3.4), Poincaré inequality )  (4.3.21)
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Now we have I3 :=p > > (ﬂi(u)ﬁxiu, Hgvh — vy )E, where 0,,,u := Ju/0x;.
ECT;, i=1,2

t1:= (Bi(u) Oy,u, Hgvh — vh)E

IN

Q(CA) (0p,u — )1 0z,u, 1wy, — vy, )E

IN

| [Tyvn — o ||
Using (4.3.2), we get,

ti < CQCN) hi |0uulsp he lonly < CQ(CN) Ay [ulvssp [unl1-

Then, substituting ¢, in /3 and applying Holder’s inequality, we obtain,
s < pCO(CA) L™ |uitsa|vnlia- (4.3.22)

Adding and subtracting the terms 1 > (7(II)u) + 7(u), IIjv, ) p to Kao, we get,
EET;,

Ky = ,LLEE_ [ (r(Muy) — r(I5u) + r(u) — r(u), IOvy )p + (r(u) —r(0), (11— Ivp)e |.

Using MVT, Cauchy-Schwarz inequality, Remark 4.5, (4.1.2) and (4.3.2), we get,

Ky < pQ(CA) > [(I(ur — u) + (u — u), vy ) g + (u, vy, — vp) g |

EcT,
< wQ(CN) X [(IS(ur — u) + (u — u), v, ) g 4 (u — 1w, vp) e |
EcTy,
< pQ(CH) EZT (lur = ulle + 2|Mu — ullg ) [lvalle
SYFS
< pQCN) 3 (llur = ulle + Chg[ulivsr ) llvalle-
EeTh

Using Holder’s inequality, (4.3.4) and Poincaré inequality, we get,
Ky < uCQ(ON) ™ |uliieq |vn|ia- (4.3.23)

Adding (4.3.20), (4.3.21), (4.3.22) and (4.3.23), we obtain the assertion (4.3.18). OJ

Lemma 4.4. For any (-,u) € B and its virtual interpolant u; € V', using (4.1.2), assump-
tions 4.2-4.4 and (4.2.12), we obtain,

pdp(ur;ur, vp) — pd(u;u,vp) < Csh’ |uplia Yoy, € th, (4.3.24)
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where Cs := 115 Q(CX) C [2h + |u|1.0 + 2 Q(CA) 6 h] |u|11s0.

Proof. Letus denote K3 := [ dy,(ur; ur, vy,) — d(u; u, vy) |. We have

Ky = p Y {(=V-eIl)_ Vuy, dpBI10u) - HSAVU;L)E — (—€Au, égB(u) - Vuy )}

EeTy,
+u > A (T’(ngI), 0r ,B(ngl) . H2_1Vvh)E —(r(u), 0 B(u)-Vu,)p} = K31 + Kso.
EeTy,
Let us define, K = p > { (=V-e(Vur+ Vu), 5E5(H2U1)'H2_1V0h)E

EeTy,

+ (—V -eVu, g [B(ng) + B(u)] - Vvh)E }
Adding and subtracting K to K31 , we get,

Ky = p Yy (-V- e(Hg_IVul —Vur)+V-eV(u—up), 0gBIu;) - Hg_1Vvh)

E
EeT;,

" EZ;— (—V -eVu, 0g [(B(ng1) — ﬁ(ng) ) + (B(ng) —B(u))]- H‘gfleh )E

> (=V-eVu, 5 B(u) - [T Vo, — Vo, ]) = ji + ja + Js. (4.3.25)

Using Remark 4.5, (4.1.2), Cauchy-Schwarz inequality, (4.3.1), we get,

i < pQ(CA) E;T IV - eI, Vur = Vur )|[g + |V - e V(u—u)|lg] 0g T, Vou| s
A
< pQ(CA) E;T O € i hig [T Vur — Vur)||g + |V (u = ur)l£] [val1,e
< pQ(CN) EEZT Chg [V ur —urlie + |u—urlip | |valie  (use (4.2.12), (5.22, [12]))
< uwQ(CN) E;’ C hg [ Y u — uly g + 3lu — u[]LE} lon|1,e (use (4.3.16) )
< uwQ(CNC h}i“ |ul145.0 |Unl10.  (use Holder’s inequality, (4.3.2), (4.3.3) ) (4.3.26)

Using MVT, Remark 4.5, (4.1.2), generalised Holder’s inequality, (4.3.5), (4.3.6) we get,

Jo < pQ(CX) E%JT 0p IV - e Vullp [1T(ur — w)lzam) + [ITu — ullsgm) ] 1Ty Vou] s ce)
h
< pQ(CA) E;T IV - eVulg [lur = ulle + [T — ullz ] [T Vor 1
h
< pnCQ(CN) E;T opehylulue [lur — ullie + H2u — ullyg] [val,e (use (4.3.1), (2.6, [82]))
h
< pnCQ(CHN EGZT lulii [ lur — ull1,e + C h3 |ulisse] |vnlie Cuse (4.2.12), (4.3.2))
< uwCQ(CN R |:L|1Q |ul14s5.0 [vnl1,0.  (use Holder’s inequality, (4.3.4) ) (4.3.27)
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Next js=p > (=V-eVu, égB(u)- [IL)_, Vo, — Vuy] )E We have,

EeTh ~
ty = 7;—21:2 (Bi(u) e Au, 6p [Dp,vn —II)_ 05,00 ),
< Q(’C’)\) 21:26 (Au—1I]_ Au, 6gdyvn)
< Q(C)) AZ;Q dpel|Au—T19  Aullg ||0s,vnl|z  (use Cauchy-Schwarz inequality )
< Q(C)) .21:72 h2 Chy | Auly s ||0svnllz (use (4.2.12), (4.3.2))
< CQ(ON) h’};S [ul 11,5 [Vn]15- (4.3.28)

Substituting (4.3.28) and using Holder’s inequality, we obtain,
g3 < uC Q(CN) R uli 10 |vnli0- (4.3.29)
We add and subtract the following term to K5,

Iz E;T (r(Iyu) +r(u), dp B(IMyur) - I, Voy ) o+ (7(w), op [B(ITu) + Bu)] - IV, ) .

Then, we obtain,

Kyp=p > p > ([r(Mur) —r(Mu) | + [r(Tu) —r(u)], 05 B(Iur) - 1), Vg, ) ,

EeT, E€Ty

+u 32 (r(w), 0 [(B(Iur) — BIRu)) + (B(Iu) — Bu) )] - IL,_, V) ,

E€Th
+u E (r(u), 5Eﬁ(u) : [H?,fleh — VU}L] )E = mi + mg + Mms.
EcTy,

Using MVT, Remark 4.5, (4.1.2) and Cauchy-Schwarz inequality, we get,

mitme < 2p[QWN* X 0p [T (ur — w)llp + ITu — ullp ] TL,_, Vo

BeT,,
< 2p[QN X e[ lur —ullp + Chy Julisse ] lvnh,e (use (4.3.2))
EeTy,

< pClQMWP A ™ |ulirsqlvnlia  (use Holder’s inequality, (4.3.4) Y4.3.30)

Using Assumption 3 (Section 1.3), (4.1.2), r(0) = 0, Cauchy-Schwarz inequality, (4.3.2),

and Holder’s inequality we obtain,
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ms < pQ(CN) (7“ ), Op [T1Y_,0pvp — amvh})E

EeThz 1,2
< pu[QWN))? > (u—T)_yu, 0p [II)_0pvn — Ouivn] )
E'GThz 1,2
< p[QWNP Y g Z Ju =TI ullg TR, Orivn — Ouivn| &
EET, i=1,2
< M[Q()‘>]2 Z op ChE‘u|s,EhE‘ariUh’1,E
EST;,  i=1.2
< w[QWN]PC IR ulitsq [vnl10. 4.3.31)

Adding estimates (4.3.26), (4.3.27), (4.3.29), (4.3.30) and (4.3.31) we obtain the assertion
(4.3.24). ]

Lemma 4.5. For any (-,u) € B and its virtual interpolant uy € V', using (4.1.2)), Assump-
tions 4.2-4.4 (section 1.3) and (4.2.12)), we obtain,

[ M, wr () — M (p, w(p)) |l < € R, (4.3.32)
where || - ||« is defined in (4.2.20) and C, = C; + Cy + C3 is a positive constant.

Proof. For 0 # v, € Vj,, let M = (M (p, ur(p)) — M (g, u(e)), vs). Using the defini-
tions (4.2.17) we have,

M = p [bh(uz; ur, vp) — b(u;u, vp) + ep(ur;ur, vn) — c(u;u, vp) + di(ur; ur, vn) — d(us; u, vn) ]
Therefore, Lemma 4.2, Lemma 4.3 and Lemma 4.4 and the definition of || - ||. implies the
required estimate (4.3.32). OJ

Now corresponding to M in (4.1.4) we consider an operator M : I x (H}(Q) N
L>(Q)) — H~Y() such that

( M (p,wp),vp ) := ,u[b(wh;wh, vp) + c(wp; wp, vp) + d(wp; wh,vh)] Vo, € VP. (4.3.33)

Now the Fréchet derivative of the operator M denoted by DM (u, ) satisfies, for any
w € Hy(Q),

(DM (p, w)w, v) := p [ Di(w;u,v) + Do(w; u,v) + Dy(w; u,v) |, (4.3.34)
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where

Di(w;u,v) = Y 0p [(Bu)-Vw, Bu)-Vv)y+ (wd,B(u)-Vu, Bu)-Vv)g

E€T,
+(B(u) - Vu, wd,Bu)-Vou)p |, (4.3.35)
Dy(w;u,v) = > (B(u) - Vw+ woyr(u) + wo,B(u) - Vu, v)g, and (4.3.36)
E€T,
Dy(w;u,v) = Y o[ (=V-ell, \Vu+ r(u), wd,B(u) Vo),
EeTh

+ (=V-eIl) \Vu+ wdyr(u), B(u) Vv), |. 4337

Next, for every u € V', we define a bounded linear operator ﬁMh(u) I x V,f’ — Y,

such that for any w € V7,

~ ~ ~

(DM, (11, w)w, v) = p [ D1 (w;u,v) + Da(w;u,v) + Dz(w;u,v) |, (4.3.38)

where,
Dy (w;u,v) = EZT g [ (BIu) - II)_, Vw + 1w 0,8(I10u) - IT)_, Vu, B(I1%u) - Hg_1VU)E
€Th
+ (B(Iu) - II)_, Vu, Iwd,B(Iu) - II) ,Vv),

+82SE((I - I w, (I —11) )v) |, (4.3.39)
Do(w;u,v) = E%;Fh [ (B(w) - II)_,Vw, v) .+ (0w d,r(IIJu), M),

+ (Mw 8,8(Iu) - IL)_Vu, v ). |, and (4.3.40)
Ds(w;u,v) = E;’h op [ (=V - eIl)_Vu+ r(I%), wd,BS(I1%) - II)_, Vv )E

+ (=V-eIl) \Vu + Iwd,r(Iu), BIu) -II) ,Vv), ].  (4.3.41)

Lemma 4.6. Consider (4.1.2), Assumptions 4.2-4.4(section 1.3), (4.2.12) and (1, u,,) € B.
Let V - Hg_IVu,AE € L>(FE), YE € Ty, then the following estimate is attained.

DM (1, ur,.) — DM (pt, u) | povr vy < Cah, (4.3.42)

where || - [[Lv;,v,) = sup ———.
0#zp eV ‘Zh‘l,ﬂ

Proof. As earlier, we denote u := u, and uy := uy ,. The following estimate will be used
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in the proof. Using triangle inequality, (4.3.2) and (4.3.4), we have,

Mur —ulhe = > IMu; —ullye
EET;,
< X MQur —=Tullye + >0 My —ull e
E€T, E€T,
< Y ur—ullie+ > Chiluliyse
E€Ty, EeTy,
< Nlur —ulj1,0 + Ch* |uliss0 < Ch° |uli1s0- (4.3.43)

We estimate the required terms one by one.

Consider 0 # wy, v, € V. Let 1 := [ﬁl(wh; ur,vp) — D1(wp; u, vy)]. Then,

n o= EEZT { 0p [ (B(Mu;) - TS, Vwy, B(I0;) - TI_ Vv, ),
—(B(u) - Vwy, B(u) - Vo )]
+0p [ (IQwy, 0,8(M)ur) - I, Vur, BI0u;) - I, Voy)
— (wp, 8,B(u) - Vu, B(u) - Vo) |
+0p [ (BMuy) - T, Vaur, Tow, 0,8(10u;) - 119, Vuy, )
— (B(u) - Vu, wy, 0,8(u) - Vo) |
+ 0582 SP((1 =11 Ywp, (I —T1Y )vy) }
= T4 T2+ 713 + Tiae (4.3.44)

To 71, we add and subtract the term

> 0 ([B(Iur) + B(u)] - T Vw, + Bu) - Vwn, Blu) - TV, ).

E€Th

Then, we get,

o= > {0p (Bu;) - T, Vs, [B(T0ur) — B(u)] - I, Vg, ),

EET
+0g ( [B(ngl) —B(u)]- H2_1th, B(u) - Hg—1vvh )E
+0g (5(“) : [Hg_Nwh — Vg, B(u) - H2_1Vvh )E
+6g (B(u) - Vuwy, B(u)- [H2,1Vvh — Vg )E }.

Using Remark 4.5, (4.1.2), generalised Holder’s inequality, (4.3.6), (4.3.43) and (4.3.3), we
get
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m < [QON] ZT 0 { 2|10, V| g [Tur — wl| sy [ITX,_y Voul| 15 (s)
EcTy

+ ([T Vwy, — V|| ([T, Vou e + ([T, V|| ([T, Vo, — Vol }
< ClRCNP Y 0p { 2|whly,e IMu; — ullyg hy'[on]1,e

EET;
+ I w, — walig [onhe + Jwile T v, — vpl1e } (use (2.6,[82]), (5.22,[12]) )

< ClQCNP Y 26p { lwilve Mus — ullyp hi'lonlve + Clwnlie [onle }
BT

< CIQCNP R [C K |uliysa + 1] [wnlivnlie.  (use (4.2.12)) (4.3.45)
Let us define,

tie =Y 6p [ (Mwy, 0,8(w) - IL)_Vuy, B(ISuy) - II)_, Vvy,)
EeTy,

+ (ngh 9uB(u) - Hg—1vub B(u) - Hg_th)E

E

Adding and subtracting 1, to 712, we get,

T2 =y, 0g [ (Wwp [0.8(1%ur) — 0.B(u)] - TI)_; Vur, B(I10ur) - H2_1Vvh)E

EeT,
+ (Iwy, 0,8 (u) - H2_1Vu1, [B(Iu;) — B(u)] - Hg_1Vvh)E
+ (Iwy, 8,B(u) - [TL_,Vuy — Vu] + [IDwy, — w, ] 0.6(u) - Vu, B(u) - H‘gfleh)E
+ (wn 8,8(u) - Vu, B(u)-[II) Vv, — Vu,]) . | (4.3.46)

Now estimating 715, we obtain,

T2 < Zr [QICN)? 65 { 2110w | Loy [T ur — wll o ey 1ML,y Vur | 1o (e) [T, Vou| &
EcTy

T w | 2oy 1Ty Vaur — V| g T Von| 3 ()
T ws, — whll Loy 1Vl L3y [T Vou || 2
Hllwnllos) [IVull L) TG Vor, = V| s }

< Y 12CNPop {2 |lwalle TM0ur — ull1,e by [Vur| g |vnl1e
Fet,

+ [ NJwll1,e 1T, Vur = Vullg b + |[Iw, — w16 |Vullie | [vnl,e

+lwall,e || Vulle ITLY vy, — vnlie } (use (4.3.6), (2.6,[82]) ).
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Using Holder’s inequality, (4.2.12), |uz|1.0 < Cluliq, (4.3.2), (4.3.3), Poincaré inequality
and (4.3.43), we get,

T2 < C [Q(C’)\)]Q h [|U|1Q Rt |uf14s0+ 142 |u|29} |wh 1.0 |vn]1,0-(4.3.47)
Same result holds for 743, i.€.
mi3 < C[QCNPh[|ulioh® ulisso + 14 2|ulan] [wilig [val10. (4.3.48)
Next, using (4.2.5), (4.2.11), (4.2.12) and (4.3.3), we get,
e < C[QCN)]? h|wilie |vnlie. (4.3.49)
Substituting (4.3.45), (4.3.47), (4.3.48) and (4.3.49) into the equation (4.3.44), we get,
71 < ChCy w0 |vn|ia, (4.3.50)

where €4 := [Q(C\)]? [4 + 2|ulo0 + 5 ulsr1.0 (h + 4lulig) }
Let 7o := pu[Da(wp;ur, vy) — Do(wp; u, vy,)]. Then elaborating, we have

Ty =y { [ (6(H2uf)'H2—1Vw/u Hgvh)E o (IB(U) - Vwy, Uh)E}

EET,

+ [ (ngh 8J(H2u1), Hgvh )E — (wh Our(u), vy )E}

+ [ (ngh 8u,6(H2u1) . Hg_1Vu1, Hgvh )E — (wh OuB(u) - Vu, vy )E] }
= To91 + Too + To3. (4351)

To 791, we add and subtract (ﬁ(u) . H?)fleh, Hgvh + vy, )E obtaining,
EeT

21 = EZT[ ([IB(ng1> —B(u)]- Hgflvwha Hgvh)E + (ﬁ(u) ’ Hgflvwh’ Hgvh - vh)E

+(B(u) - [T, Vwy, — V], vy ), |

= EZGJT [ ([B(IT%u;) — B(u)] - TI)_; Vwy, 1T0u, )E + (B(u) - 1) _ Vwy, o, — Uh)E

+ (ﬁ(u) -Vwy, v, — Hgflvh )E ]

< EZT Q(CN) [ IM0ur — ul| s (g | TT)_, Vs |l 5 0] 1o ()
€'/n

T, V|l e [Thvn — valle + [Vwslle lvn — TR_yonlle].
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Then, we get

1 <y QON) [Mur — ullyg [walre [[TSvs |,z
BT

+|wh|1,E C hE |Uh|1,E + |wh|17E ChE ’Uhll,E} (USC (436), (432) )
< CQ(CN) [IMur — ullro + k] |wplialvalie  (use Hélder’s inequality )

< CQCN R [W " ulssr0 + 1] [wplia [valie.  ((4.3.43)) (4.3.52)
To 722, we add and subtract Y. (wy, 9ur(I0ur), v, + vy ) ,, Obtaining,
E€Th
T = 2 [ [TDwy, — wy ] Our(IDur), vy )E + (wp Our(IRur), vy — vy )E

EeTy,
+ (wn [D,r(uy) — (). ) ).

< > QON) [ITwy, — wil e [Thvall e + [Tws e [TTHvs — vall
BT,

Hlwnllzae) Myur — ull o lonlle]

< C Y 9(CN) [2 hi |wil1,e [vn) e + Hﬂguz — ull1,5 [|wnll,e ||Uh||1,E}
E€T,

< CQCANh[2+ het [ul14s.0 ] |wnlie |vn1,E- (4.3.53)

To 793, we add and subtract the term

2; [ (wh 3u,3(H2u1) . H2_1Vu1, Hgvh )E + (wh 6uﬁ(ng1) - Vu, Hgvh + vy, )E }
EeTy,

s = 3 [ ([Twn — wn] 0B(Mur) - Ly Vuy + wy, 0,8(Muy) - [IL, Vur — Vu], vy ),
EcTy,

+ (wp 8U,B(ng]) - Vu, Hgvh — Uh)E + (wn [3u,6(H2uI) — 0u,B(u)] - Vu, v, )E ]

< EZT Q(CA) { (L) = Dwnlle,e 1T, Vurlle + lwillss 1T Vur — Va2 ] [T vs]|s,e
€h

Hlwnllzz ey 1Vulls.e Mv, — ville + lwills.e Mur — ulle.e [ Vulle lvnlls.e }

Simplifying further, we have
. < C > Q(CN) { [ [whl1,e 2 ulye + lJwslle ITL_ Vur — Vaul|g] [[vall1,e
EET;,
+[hp|ulz,s + ||ng1 —ull1g [ul,e ] [[whlle [Jvall,e }

< CO(CNh { 2 uly 0+ ho! [ulsi1.0 + [ulao + 257 ulsii0 [ulio } |wp 1.0 [vn]10-
(4.3.54)

109



Substituting (4.3.52), (4.3.53) and (4.3.54) into the equation (4.3.51), we get,
Ty < C hCys|wplra |vn|ia, (4.3.55)

where  Cgo := Q(C)) [3 + |ulog + 2|ulr0 + 25 ulsi1.0 (3 + |ulia) }

Let 75 := 11 [Ds(wn; ur, v) — D3(wp: u, vp,)]. Then, we obtain,

T3 = EZT {5E[(—V-6H2_1Vu1, 0wy, 0,B(MYur) - TI) V),
€/n

—(=V eI, Vu, w, 8,8(u) - Voy) , |
+0p [ (r(MTu), Wow, ,8(IMur) - T Vo) ,
— (r(u), wn0Bw) - Vur), ]
+0p [ (—V : €H2_1th7 ﬂ(ngI) . H2_1Vvh )E
—(=V eI Vuy, B(u)- Vo), |
+0p [ (ngh 8u7“(H2U1)> ﬁ(ngl) . H2_1Vvh)
— (wy, Byr(u), Bu) - Vo) | }
= T31 1 Ts2 + T33 + T34. (4.3.56)

E

To 731, we add and subtract

> g (=V-eIl) ,Vu, [Twy, + wy] 8.8(I%ur) - II)_, Vg )

EeT, B
and z 5E (—V : 6H271Vu, Wp, 8uﬁ(l_[2u1) . VUh )E
E€Ty,
obtaining,
T o= > 0p[(-V- GHg_l[VUI — Vu], Twy, 0.8(I1u;) - Hg_IVvh )E
E€Ty

+ (=V - el)_Vu, [IDw, —wy ] 0,8(01u;) - IL_ Vuy, )E
+ (=V - ed) , Vu, wy 0,8(Iu;) - [II)_, Vv, — Vo))
+ (-V- 6H271VU, wy, [0.B8(I0ur) — 8.68(u)] - Vo, )E l.

Using the assumption V - Hg_1Vu|E € L>®(FE), VE € T,, MVT, (4.1.2), generalised
Holder’s inequality( with (4.3.6), we get,

110



o < QION) X 0p (|| = V- el (Vur — V)| g [TTwa | pae) 1T, Vou |l zoce)
E€Thy

+e |V T, Voo g [Twn — whllg ([T, Vus| s
+e ||V -I)_ Vull ooz lwall g ITT)_ Vo, — Vus| g
+e ||V - TL_ Vulloo s l[wnl s ey 1Thur — wllzos) [ Vonl e ]

< Q(CN) Y dpeC [hg |TL_y (Vur — V)| g [[T0wy ||, e |ITL_ Vop||1,e (use (4.3.1) )
EeTy,

VT YVl e ) b [wnlyz [one + 1V - T Vullso, s [wh]1,z [T 0 — val1.6
|V T Vullso,z lwnlly,e T ur — ullyg [vn]1,z]
< QICN) R C [ B2 uli1s0 [whli0 [vn]1,e (use (2.6,[82]), Holder’s & (4.3.4) )
IV T, Voo, (h+ 1) [wal10 [val10
|V T Voo e Jwnllie b Julsi10 [vnlie | (use (4.3.43))
< CQCN A [P ulssra + (B +h+ T ulg0) IV - TL_ V| sop |- (4.3.57)

To 735, we add and subtract the terms > g { (7(u), IOwy, 0,68(0ur) - II) V) . +
EcTy,

(r(w), wp 8,B5us) - (TL)_,Vvy + Vuy) ), } and to get

T32 =
EeTh

o { (r(0u;) — r(u), Mwy, 0,8(I10u;) -H2_1Vvh)E
+ (r(w), (Myws —wy) 8,B(Iur) - II) Vg, ),
(r(u), wp, U,B(HOUI) (H071Vvh — Vuy) )E
(r(u), wy, ( U,B(Hou]) 0uB(u)) - Vo )E }

Using the MVT, (4.1.2), generalised Holder’s inequality, (4.2.12) and (4.3.6), we get,

T2 < [QICN]? Y 6p { 1M0us — ull ro(ey |Twnl| sy ITL,_; Vou| &

E€T,

0w — whlls [T, Vonls + [lwnlls [TE, Vo — Vol

+ ||ng1 — ullzoe llwnllemy | Vorlle }

< C [Q(C)\)]z Z 0p { ”ngl - UH1E |wh’1,E ’Uhh,E +hg \wh\l,E ’Uh\l,E
EE€T;,
+ lwallg 1T vp — vlle + 1Mur — ullye lwalle lonllue }
< ClOCNPh[2h% |ulisso + b+ 1] [wpl10 [vn]10- (4.3.58)
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To 733, we add and subtract y_ dp (—V - ¢ Hg_Ith, B(u) - Hg_1Vvh )E Then

EET;,
T3z = E%;rh op (=V eI \Vuy, [B(u;) — B(w)] - IL) Vo, + B(u) - [, Vo, — V] )
< CQ(CH) E%:T op ||V - 6H2_1th||E [||ng[ — ul|L3(m) ||Hg_1Vvh||L3(E)
h
+[|TI)_, Vo, — Vg 5
< C Q(C)\) E;r 5E€h;;1 Cmv\whh,E [Hﬂgm - UHlE HH2_1VvhHl,E + |Hkvvh - Uhh,E]
h
< CQ(CN) E;F 5E€h51 Cinv|Wh|1.E [HH?,uI —ull1e h;;l\vhh,E + \Uh|1,E]
h
< CQ(CN) h [ Cino 7 ulsr1,0 + A ] [wilia [vn]10- (4.3.59)

Estimating 734 in a similar way as 735, we obtain,
T30 < C[QCN]Ph[2h° [uliyso + h+ 1] |whlia lvn|i0- (4.3.60)
Substituting (4.3.57), (4.3.58), (4.3.59) and (4.3.60) into the equation (4.3.56), we get,
73 < C'hCy3|wpl1a |vn|1a, (4.3.61)

where  Cy3 1= Q(CA)[h'~* [ulsi1,0 (1 + Cino + |V - TL)_ V|| s ) + h 4 (R + B)[|V -
H2_1Vu||oo7E} + 2[Q(CN)]? [th |uls+1.0+h+ 1}.

Applying the results (4.3.50), (4.3.55) and (4.3.61), we get the required estimate (4.3.42)
with 84 = 641 + 642 -+ 643. O

In our next lemma, we show that the operator M}, is in fact locally Lipschitz continuous.
Let X be a Banach space over the domain w and for any x > 0,y € X, we denote
B(y,k) ={z€e X : |z—yho <K}

Lemma 4.7. Consider (4.1.2), Assumptions 4.2-4.4(section 1.3), (4.2.12) and (i, u,,) € B
with virtual interpolant u; ,,.. For uy, us € B(ur,,, p) N V¥ with p < Chi, ¢ > 1 and for

sufficiently small h, the following estimate is obtained,
([ M (e, w1 ) — Mp(p, uz) — BMh(M, ur ) (ur — u2)ll« < Nip(p, lurplio)|ur — uszli,
where the function Ny(0, -) satisfies,

lim sup N, (0, ) =0 Vo e RT. (4.3.62)
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Proof. For notational convenience, as usual we denote v := u, and u; := uy,. First, we
show the L>° bound for elements in B(uz, p) N V}*.

Let v, € B(uy, p) N VY. Estimating similarly as in Remark 4.5, we get

> vl emy < C X (hg' | Tulle 4+ T0vs|1e + he[llov|ak )
FeT,

EE€T,

IN

C > (24 ciny) (on — urhp + Jurh,p)
E€Ty,

C(lvp —urlio+lurhio) < C (R +2|ulio)
< C3X<CA\ (forsufficiently small h) (4.3.63)

IN

Let us denote & := uy; — ug. Consider the inner product

( My (2, u1) — My (g1, ug) — DMy (11, wr)E, v ). (4.3.64)

We estimate each terms in the expansion of (4.3.64) one by one.
Let J1 = pu(bn(ur;ur,vp) — bu(ug;us, vy) — D (& ur, vp) ). Adding and subtracting
p > ([B(Iur) + B(MYus) | - TT,_ Vius, 0 B(IYur) - IL) Vv, ) . we get,

EcTh

Jp = MEZT { (B(I10u,) - Hg%V(ul —ug), 0g B(II0uy) - H?,flVUh)E
S

+ ([B(Myu) = B(Ius) | - TT)_ Vuy, dp B(Ijur) - TV, ),
+ (B(IMug) - II) Vg, 05 [BI0u) — B(IMus) ] - TV, ),
+op 8% SE((I - IY)e, (I =1L )un) } — Dy (& g, vp).

pC 5 [{ (B(w) - T, VE, g B(Iw) - TI,_Von ),

E€Ty,
+ ( —ﬂ(HOUI) : HO V&, og B(ngl> : H2—1vvh )E }
+{ (0uB(I)zy) - IT)_,Viuy, 65 B(I0u,) - TL) | Voy)
— (M€ 0uB(IMYuy) - IX)_Vuy, 6pB(Iu;) - I Vo), }
+{ (BIuy) - II,_,Vuy, 05 8,8(Ix1) - TI) Vo, ),
— (B(Myuy) - 1), Vuy, 6pI0¢ 0,81 u;) - II) Vg, ), }]
= Ry + Ry + Rs. (4.3.65)

IN

where x1 :=~yu; + (1 — v)uy for some v € (0, 1).
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Note that 71 € B(uz, p) N V;*. Using (4.1.2), (4.2.5) and Holder’s inequality, we get,
R1 S /LC& ’5‘179 ‘Uh‘l,E- (4366)
To R, adding and subtracting the term

p Y2 (196 [0uB(IM0xy) + 8,8(I5us) | - IL)_, Vuy, 6p B(I0uy) - II) ,Vuy, ),
EeTy,

we obtain

R2 == [LC Z { ( auﬁ(ngl) . Hg_IV(Ug — U]), 5E B(ngl) . Hg_IVvh)E

EcTy,

+ ( [0uB(I00x1) — 0,8(I0u;) ] - II)_,Vuy, dp B(Myuy) - TL) Yoy, ),
+ (¢ 0uB(IMuy) - II)_, Vuy, 6 B(Mpur) — B0 u;)] - II) Vouy, ), }

Using (4.1.2), generalised Holder’s inequality, (4.3.6), (2.6,[82]) and Poincaré inequality,

we get,
Ry < pC Y 0p (M) V(us —up)llie + |21 — urllye |1TL_, Vurlls

- EETh,

Hlur = wrll1,e T Vurllie ) 1€]1e [onle

< uCo (h_l lug — ur|1i0 + [z —urlio + w1 — urli0] h! |UI’1,Q) €10 [vn]1a
For any member z;, € B(uy, p) NV}, we have,
lznli0 < p+ |urlio and |ur — zp|10 < p. (4.3.67)
Thus, we obtain,
Ry < pCoh ' p(142Jurhe)lélielvnlio. (4.3.68)
To R3 adding and subtracting the term

p Y (M9 B(TMug) - I, Vuy, 0 [9.8(110x1) + 8,B(us) | - T, Vuy, )
EeTy,

we obtain the same result as (4.3.68). Therefore substituting the results (4.3.66) and
(4.3.68) into (4.3.65), we get,
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J1 <pCo (1420 p(142urlia)) e oo (4.3.69)

Let Jo := ,u(ch(ul;ul,vh) — cp(ug; ug, vy) — ﬁg(f;ul,vh) ) Adding and subtracting

p Y (BI0uy) - T Vuy, vy ) . to Iz, we get,
EeTy,

Jo = p > {( (Houl)—r(HUUQ Hovh) +
E€Th

BIu;) — B(Mouy)] - I, Vuy, vy ),

< X () — r(I0us), H%h) + (1% 0,8(I5w, ) - TI)_, Vuy, vy )

E€Ty,

(I8

+ (B(Ius) - II) V¢, Muy ), — Dy(&ur,vn) }
+(
)

+ (B(Ius) - IL,_ V€, vy ), — Do(&ur,vn) },

where  w; :=vu; + (1 —v)uy forsome v € (0,1).
Again, adding & subtracting p¢ . (T9¢ B(I10u;) - IL)_, Vuy, T0vy) L We get,
EeTy,

J2 < p > { (10 [0ur(ws) — Byr(Mug)], Hgvh)E

EeTy,
+ (¢ [0.8(IMwy) = 0,B8(Muy)] - L), Vr, Ty ),
+ (Hgf auB(ngl) ) Hgflv(w —w), Hgvh )E
+ (Hg(UQ —uy) 8u,8(ng3) : H2_1V§, Hgvh )E }

where, wy = Vug + (1 — D)uy, ws:=rvu; + (1 —D)uy forsome v, v € (0,1).

Note that wy, wy, ws € B(uy,p) N VY. Using (4.1.2), generalised Holder’s inequality,

(4.3.6) and Poincaré inequality, we get,

Jo < pC Y {|lwe—usllp+ |lwr —willgluilie + lur — wlie + lJus — urlle } 1€]Le lonlle
Fet,

< MC{ |wy — U1|1,Q + |wy — U1|1,Q |U1|1,Q + |ur — U1|1,Q + |ug — U1|1,Q } |§’1§2 |Uh|1,Q
Therefore, using (4.3.67),

Jo <uCp(3+p+lurlria) lélialvnia (4.3.70)

Let Js := p(dp(ur;ur,vp) — dp(us;us, vy) — Ds(&;uz,vp) ). Adding and subtracting
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> (=V-eIl)_Vuy +r(I%us), 6 B(I0us) - II)_, Vo, ), to ds, we get,

EeTy,

J3 = MEZ;‘ { (-V- 6H271V§ + [r(ITuy) — r(IQus)], 0p B(IIuy) - ngVUh )E
€/h

+(=-V- 6H2_1Vu2 + T(H2UQ), oy [ﬂ(ngl) — 5(H2U2)] : Hg_IVvh )E
—ﬁs(f;uhvh) }
< pnC ¥ [{ (-V-dL_,VE+ T 0, (), 5 B(Iuw) - T, Voy ),

E€Ty,
+ (r(us), 0pILED,B(Iy,) - II) ,Vuy ),
+ (r(Mur), 6 T0¢0.B(0I0u;) - TI) ,Vuy,)
+ (=V eIl V& + ¢ dur(Myur), 65 B(IMur) - TV, ), }
+{ (-V eHO _Vus, 0p auB(Hgyg) -Hg_IVvh)E
+(=V eI} Vuy, 6p110¢0,8(Iu;) - I V), }]
= Y+ (4.3.71)

where y; := Juy + (1 —F)ug, yo :=Fus + (1 — ) uy forsome 7, 5 € (0,1).
Using (4.1.2), Cauchy-Schwarz ineq., (4.3.1), (4.2.12) and Holder’s ineq. in Y7, we get,

Vi < puC Y (2hg i léle +30el€le) lonle

EcTh
< puC(2¢muh+368)[1alvnlie.  (use Poincaré inequality ) (4.3.72)

Adding & subtracting Y. (=V - eIl Vuy, dgT15¢ 9,8(I10y,) - TI) Vi, ), to Vs
EcT;
we get "

Yo = pC Y { (=V el V(ug —up), 5pT10¢0,6(Iy,) - T, Voy ),
EeTy,
+ (=V - eII)_ Vuy, 05115 [0.8(Iy2) — 0,8(0u;) ] - IL)_ Vo, ) . }
Using (4.1.2), generalised Holder’s inequality, (4.3.1), (4.3.6) and (2.6[82]), we get,

Y,

IN

1wC Y dpecmuhy' (lus —urhe + vz — willue ) 1€l [T V|16
BT

< uC Y dpecimhy (Juo —urhe+ ly2 — urllie) 1€lle [Vorlie
EET,
< puC iy (Jus —urlio+ |y2 — urlio) [€halvalie  (use (A5,0))
< wuCeinu2pl€lialvnlia. (use (4.3.67)) (4.3.73)
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Substituting (4.3.72) and (4.3.73) into (4.3.71), we get,
J3 < uC ( 2 Cino h + 30 + Ciny 2 P) |f‘1,§2 ’Uh‘l,ﬂ- (4.3.74)
Using the results (4.3.69), (4.3.70) and (4.3.74) we obtain

Ni(p, lurlie) == pC[46+ 2cmeh+0h™" p (14 2ur|io)
+p(3+ p+ |urlio 4 2¢m0) . (4.3.75)

The results (4.3.69), (4.3.70) and (4.3.74), along with using (4.2.12), putting p = 0 in

(4.3.75), we validate the assertions of the lemma. U]

4.4 Convergence analysis

Let uy, be the discrete solution to (4.2.13). We use the following natural norm for our

analysis,

llonll® = € lonlf o + EZT o [|B(un) - Vuu |/ 4.4.1)
€7h

We have proved the existence and uniqueness of discrete solution using the results given in
Section 3.4 of [80].

Theorem 4.1. Consider the following estimations

(Z> ”Th“L(Y,L,v,f) <C, and }g% ||T - ThHL(Yh,Vf) =0. (4.4.2)
(41) lim lv—viia=0 Yve Hi(Q), and (4.4.3)
_>
lim sup {| M, (p, wr (1)) = Mo(ps u(p))[l. = 0. (4.4.4)
(iid)  Yw, € VF IDMy(p,wy) € LIV, Yy,
lim sup 1D My (11, ur) — D Mo, u(p) || vk sy = 0. (4.4.5)
—0 ,UEI h

(iv) for any z, wy, € B(ur,,, p) N V¥ we have
[ M (s zn) = Mp(ps wn) — DMy () (20 — wi)ll e v
< Ni(p, |url,0)|zn — wil1,0, (4.4.6)
where Ny, : RT x Rt — R™ is continuous and monotonically increasing in

each variable and satisfy }llin(l) Nu(0,0)=0 VOeR". (4.4.7)
—
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Assume that the conditions (4.4.2)-(4.4.7) are satisfied. Then,

1. there exists a neighbourhood Ny around the origin in Hj () and for sufficiently small
h, a unique branch { (p, up,) : p € I, up, € VP'} of nonsingular solutions of (4.2.19),
such that

Yuel, Uy, — upy, € No and (4.4.8)
2. the following error estimate holds,

luy —unpllie < C {llu—usllie+ 1 (T = Th) Mo(p, u) |10
(| M, wr ) — Mo (g, ug) |+ }- (4.4.9)

Proof. Consider the discrete operator 7}, defined in (4.2.18). For any g € Y}, we have
Tyg € th and from (4.2.18) we note

min{L, a. }|Thgliq < (9. Thg) < llglla|Thglr0-

Thus |Thg]1.0 < |lglle Vg € Y, implies that [| T[]y, vr) < 1.

Considering the continuity and coercivity property of (4.1.5), definition (4.2.18) and
applying Cea’s lemma we get (similar to (4.19) in [81]),

lim v — vl 0 =0 Yve Hj(Q).
h—0

Note that the results (4.4.3) and (4.4.4) follows from (4.3.4) and Lemma 4.5, respectively.
Similarly the estimates (4.4.5) and (4.4.6) are obtained as a consequence of Lemma 4.6 and

Lemma 4.7, respectively.

Thus, the existence of a unique branch { (u, up(p) ) : p € I, up(p) € V4 } of nonsingular
solutions of (4.2.19) satisfying (4.4.8) is guaranteed.

For sufficiently smooth 7'f, from the definitions of 7, T},,Cea’s lemma and by using

(4.3.4), we obtain an estimate
(T, —T)flia < CR*|Tfliir0- (4.4.10)
In (4.4.9), applying (4.4.3), boundedness of 1" — T}, in (4.4.2) and lemma 4.5, we get

luy — un(p)]1,0 < Ch° |ufsi10. 4.4.11)
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O]

Next, we prove two auxiliary lemmas that will be used in convergence estimates with

respect to ||| - |||

Lemma 4.8. Let u;, € V}P be the discrete solution of (4.2.13) and uy be the virtual element
interpolant of an exact solution u. Then using (4.1.2), assumptions 4.2-4.4, (4.2.12) and

for ¢, = u; — wuy, the following estimate is obtained,

A({ur, un} sur, én) — A({un, un} ; un, 1) > Csy [lonll* — Cs2 |} o(4.4.12)

where Cs; :=min{1, a,, .} and Csy := C QN)[AQN)I + 1+ A+ cinoh + 0 ].

Proof. First we consider A; := ap,(uy, ¢n) — ap(un, on) = an(dn, ¢r). Then using (4.2.5)
and the inequality ||(I —IL_)Véy||p < V(I — IIY )¢y || (see [12]), we get,

Ar > min{l, a.} €|on[] g (4.4.13)
Along the lines of remark 4.5, we get the estimate,
T up||oe, e < C . (4.4.14)

Second, let Ay := by, ({us, upn};ur, dn) — bp({un, up}; un, dr). Adding and subtracting the

term Y. (BIuy) - 1), Vuy, 65 B(I0up) - II) | Vy, ) .. we get,
EcTy,

Ay o= bu(un; ¢n, o) + > (1B(M0ur) — B(I0us)] - I, Vuy, 0p B(Mous) - TL_Vén ),

E€Th

> 0. b({un, unt; én, on) + Aa. (use (4.2.10)) (4.4.15)
Using the procedure in remark 4.5 we get the estimate,
VE € Ty, I énllco,e < Clonlie. (4.4.16)
Using (4.1.2) and the generalised Holder’s inequality (with é = 0), we get,

Ay < C [Q(A)]QEZT Op HHg%Hoo,E lurl1,e |onl1.e
€'/n

< COWN Y dp2lulie|dnlis (use (4.4.16))
E€Ty

< OX[QWN)? 4ol g (4.4.17)
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Thus, from (4.4.15) and (4.4.17), we get,

Ar 2z o0 3 0p|B(un) Vorls — CAQNI & |6nl: o- (4.4.18)

Third, we consider As := ¢ (ur; ur, ¢n) — cn(un; up, ¢r). To this adding and subtracting
the term > ( B(IYup) - I, Vuy, Ty ) ., we get,

EcTh
\As] = | EZT { ([r(MSur) — r(Qup)] 4+ B(M0up) - ), Ve, Ier )
+ ([B(Iur) — B(ILuy)] - H2—1VU17 D¢ )E }
<

C QN EZF { Nonll% + |onll 2 |énl,e + 1200 L k) [urlye |onlle }
€'/

COWN) X {lonllz + lIonllelonle + |onle lule |énl s }

EeT,
< COWN {lonlle + llonlla [dnlia + |onlie 2lulia nlle } < C QM) (14 N)|nl: g

IN

Thus we obtain the inequality,
As > —=CO\) (1+ ) |dnlig. (4.4.19)
Lastly, we estimate |.A4| = |dh(uh; ur, (bh) — dh(uh; Up, (ﬁh)‘ Then,

|.A4| = | Z { (—V-eﬂg_Ingh, 5E6(H2uh)H2_1quh)E

E€Ty,
+ ( [T(ngj) — r(ngh)], or ﬁ(ngh) . Hg_1V¢h )E } ‘

< CON) EZF (Cinv he |Onld 5+ 0p |onlle |énle)  (use (4.3.1), (A1)
€/n

< CON)(cimvh +6)[dnliq.
Thus,  As > —C Q(N)(Cinoh+0)|dn]5 ¢ (4.4.20)

Combining the results (4.4.13), (4.4.18), (4.4.19) and (4.4.20) we get the assertion (4.4.12).
O

Lemma 4.9. Let u;, € V,f’ be the discrete solution of (4.2.13) and u; be the virtual element

interpolant of an exact solution u. Then using (4.1.2), Assumptions 4.2-4.4, (4.2.12) and
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for ¢, = u; — uy, the following estimate is obtained,
A{ur, un} s ur, ¢n) — A{u, un} s u, ¢n) < Ce h* (e + h), (4.4.21)
for some constant Cg > 0.
Proof. Let := u; — u. We have by (4.4.11) and (4.3.4),
[Onl10 < [Unlio + |[u— unlio < C R fulsr0 + C R < CR. (4.4.22)
Similarly, using (4.3.4), we have,
[nlia < Ch°. (4.4.23)
Consider, Z; := ap(ur, ¢n) — ap(u, ¢n) = ap(n, ¢n). Then,

Z, < C Y (€’¢h’1,E|¢h|1,E+ea* ]whh,E|¢h|1,E)

EeTy,
< Ce(l+a") |Ynialonhia < Ce h*  (use (4.4.22) and (4.4.23) ). (4.4.24)

Now, let Zo := by, ({ur, upn} ;us, én) — bp({w, up} ; u, ¢p). Adding and subtracting the term
> (ﬁ(ng) ) Hg_lvm Op 5(H2Uh> : H2—1V¢h )E, we get,

EET;
Zy = ) { ([5(1_[2“[) - 5(112@] -Hg_lvm, op IB(ngh) -H2_1V¢h)E
E€Ty
+ (B(yu) - II)_,Vipy, g B us) - II) \Véy) . + g 82 SE((I — 1LY )b, (I — 0L )p) }
< ClON)? EZF o (11Unlle lurli,e [énl Loy + (1 + o) [Unlik |dn]1e )
€/h
< CIOWP X de(A+1+a*) |Unllieldnlie  (use (4.4.16))
EET;
< C(A+1+a")0|Ynlialdnlia (use Holder’s and Poincaré inequality )
< Chh?* (use(4.4.23), (4.4.22) and (4.2.12)). (4.4.25)
Next, we consider Z3 := ¢, (ur; ur, én) — cn(u; u, ¢p). Adding and subtracting the term
> (BII0u) - II)_ Vuy, 19, ) 5> We get,
EET;
23 = ZT { ([r(Mur) = r(10u)] + B(Mou) - T, Viby, Ty ) ,
EET),

+ ([B(Iu;r) — B(ILw)] - II)_, Vuy, chbh)E }.
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Estimating the term Z3, we get,

2z < C O\ p2 ZT e{ e lonll 2 + ¥nlle [wrlye T dn oo ) + 19016 | }
EcTy
< CON) pe EZT e { 1vnlle llenlle + 9l lurlre |9nle + [¥nle ol 2 }
€/n
< Ce(2+|urlio)|Ynlialénie (use Holder’s and Poincaré inequality )
< Ceh®. (4.4.26)
Finally, we have Z4 := dp,(up; us, ¢p) — dp(un; u, ¢p). Therefore,
s = > (=V- eﬂg_lvwh + [r(Iuy) — r(Iu)], og BT uy) - H2_1V¢h )E
E€Th
< COWN) Y b (€cimw by [Unlie + [Unlle) |onl1E
EET,
< Chlphaldnlia < Chh*. (4.4.27)
Combining the estimates (4.4.24)- (4.4.27), we get the desired result (4.4.21). O

Now using auxillary lemma 4.8 and lemma 4.9, we obtain the following error estimate

theorem.

Theorem 4.2. Let us consider (4.1.2), Assumptions 4.2-4.4, (4.2.12). Let u, € V! be the
discrete solution to (4.2.13) and u € H&(Q) be the exact solution satisfying (4.1.3) with

u € H*Y(Q). Then, for sufficiently small h, we have,
[ — unll| < CBE (VR + Ve).

Proof. From lemma 4.8, lemma 4.9 and (4.4.22), we have

Cs2 Co ) 2
—+ — | h** (e + h).
60651 651 ( )

s — w2 < (
Next, using (4.3.4), (4.2.12) we get,

M= urll? = clu—uilo+ S 8el180m) - Vu—ur)l3
E€Ty,

Ceh® ultygo+ CIQUA* ! uli, g
< Crh¥(e+h),

IN

where  C7:=C (14 [Q(N)]) |[ulf,,q-

122

(4.4.28)

(4.4.29)

(4.4.30)



Substituting the estimates (4.4.29) and (4.4.30), we obtain,
I = unll? < Clllu—wrll[* + [[lur —uall|’] < Ch*(e+h). (4.4.31)

O

4.5 Numerical Experiments

In this section, we perform numerical experiments to validate our theoretical conver-
gence estimate derived in Theorem 4.2. As the model problem is nonlinear, the discrete
scheme (4.2.13) results in nonlinear system of equations. In the first experiment, we solve
this system using Newton’s method and show the obtained rate of convergence using con-
vergence plots. However, the numerical solution obtained using this approach is time con-
suming. In order to improve the time efficiency, that is, to reduce CPU time taken to solve
the system, we perform the two-grid approach (see [79]) and compare the performance of
both these techniques in our second numerical test. In the two-grid method, we consider
two VEM spaces V}” and V}” with mesh diameter h < H. At first, we obtain a discrete
solution u g of (4.2.13) in the coarse space V}” using the standard Newton’s method. Then,
at the finer space V", we incorporate uy into the discrete scheme and perform only two
Newton’s iterations, to obtain the solution w;. In order to obtain the optimal accuracy, we
consider h < H?.

(a) (b)

Figure 4.1: Representative Voronoi and non-convex mesh employed in this study.
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We have considered two types of meshes namely regular Voronoi and non-convex mesh
on a square domain for the considered numerical tests. For step size h = 1/5, we have
shown the sample meshes in Figure 4.1.

Let u, uj, represent the exact and discrete solution, respectively. In the examples, we eval-
uate the H'(Q) semi-norm and the energy norm denoted by ej,; and ey ., defined as

follows,

G = D IV u),

EcTy

e = 2 (IVEV (= un)lf + ol B015w,) - V(u = )}

E€T,

4.5.1 Example 1

Consider the unit square domain 2 = [0,1] x [0,1] and choose the exact solution
u(r,y) := xysin(rz)sin(ny). The coefficients are taken as ¢ = 1075, B(u) = (u,u)?
and r(u) = 2u + f , where function f is defined such that u satisfies (4.1.1).

The convergence graphs are shown in Figure 4.2 for the H' semi-norm and energy norm,
and for VEM orders 1,2 and 3,respectively. As predicted in Theorem 4.2, we observe that

the method converges numerically to the expected rate of convergence.

4.5.2 Example 2

Consider the unit square domain 2 = [0,1] x [0,1] and choose the exact solution
u(x,y) :=e*x (v —1)*y (y — 1)2. The coefficients are taken as ¢ = 107, B(u) = (u,u)”
and r(u) = 5u + f, where function f is determined such that u satisfies (4.1.1).

As mentioned in the numerical setting (Section 4.5), in order to reduce the computa-
tional cost involved in solving the nonlinear system of equations, we have used two-grid
approach. Table 4.1 and Table 4.2 shows the comparison between Newton’s method and
two-grid approach for Voronoi mesh for the VEM order £ = 1 and k£ = 2, respectively. We
observe from the tables that CPU time of the two-grid method is halved compared to the
Newton’s method when the mesh diameters are decreased. Tables 4.3 and 4.4, shows the
CPU time comparison for the non-convex mesh. Similar to Voronoi mesh case, two-grid

approach takes lesser time than the Newton’s method on a single grid.
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Figure 4.2: Rate of convergence plot in the H' semi-norm and energy norm for (a)-(b)
Voronoi mesh and (¢)-(d) Non-convex mesh for VEM orders £ = 1, 2 and 3.

Newton’s method

Two-grid method

h en,I-ll rate  Time H en,||I-|l rate  Time
1/8 1.689365¢73 2.99 1/4 1.536699¢3 - 238
1/16 7.071470e~* 125 12.71 1/4 5.071543¢7* 1.59 6.41
1/32 2.756350e~* 136 51.39 1/8 1.835257¢~* 1.47 25.01

Table 4.1: CPU time comparison: Newton’s method and two-grid method for the VEM
order k£ = 1 using Voronoi mesh.
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Newton’s method Two-grid method

h en Il rate  Time H en Il rate  Time
1/8 9.361893¢75 - 2.56 1/4 9361952¢=° - 224
1/16 1.329525¢=° 2.82  14.05 1/4 1.329529¢7° 2.83 6.81
1/32 2.485511e% 241 112.70 1/8 2.485511e™6 242 55.11

Table 4.2: CPU time comparison: Newton’s method and two-grid method for the VEM
order £ = 2 using Voronoi mesh.

Newton method Two-grid method
h en,||-|I rate  Time H enl|-ll rate  Time
1/8 2.341559¢73 - 2.33 1/4 2223864e73 - 1.41

1/16 1.052441e3 1.15 5.44 1/4 7.758496e~* 152 4.42
1/32  4.166264e% 134 41.39 1/8 2.650724e~* 1.55 19.74

Table 4.3: CPU time comparison: Newton’s method and two-grid method for the VEM
order k£ = 1 using non-convex mesh.

Newton method Two-grid method
h en,II- Il rate  Time H en,II-|Il rate  Time
1/8 2.260889¢4 - 1.95 1/4 2.260918¢4 - 1.33

1/16 4.089832¢™° 2.46 9.89 1/4 4.090097¢~° 247 495
1/32 6.897373¢76 257 7509  1/8 6.897400e 5 2.57 37.40

Table 4.4: CPU time comparison: Newton’s method and two-grid method for the VEM
order k£ = 2 using non-convex mesh.

4.6 Summary

In this article, we have analysed the SUPG stabilized Virtual element method for quasi-
linear convection-diffusion-reaction equation. We have used suitable polynomial projection
operators and VEM stabilizers with appropriate coefficients, in the formulation of the dis-
crete scheme. This ensures computablity and stability of the VEM discretisation. Most
importantly, we have proved the existence and uniqueness of discrete solutions approx-
imating the branch of solutions. We also proved the convergence estimate by showing
the optimal rate of convergence in the energy norm and H' seminorm. We conducted

numerical experiments using higher order virtual element method of orders p = 1, 2, 3.
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Numerical simulation of the nonlinear problem over a fine grid is always time-consuming
and thus computationally expensive. In order to address this issue, we use two-grid method
which solves the nonlinear equations on two grids of different sizes, which significantly
reduces the time complexity. We have performed the numerical experiments with the two-
grid method and compared it over the standard Newton iterative approach. We observed
from the tabulated results that CPU time of the two-grid method is halved compared to
the Newton’s method, for very fine mesh that is, when the mesh diameters are decreased.
Also, we note that the two-grid performs efficiently without compromising on the accuracy,

independent of the type of mesh.
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Chapter 5

Virtual Element Analysis of Nonlocal Cou-
pled Time-dependent Reaction-Diffusion

Equations on Polygonal Meshes

We present a virtual element framework for the nonlocal coupled time-dependent reaction-
diffusion problem. Such problems find nitsche applications in many fields of applied sci-
ence and engineering, for example in modelling epidemics [83, 84], polymerization [85],

tumor growth modeling [86], to name a few. The nonlocal coupled time-dependent reaction

diffusion problems belongs to a wider class of nonlinear problems, namely the nonlocal
coupled parabolic problems. Henceforth, we shall address this problem with the latter
terminology. In [87], the authors proved the existence and the uniqueness of the analytical
solution of the nonlocal coupled parabolic problem. Numerical solutions based on the finite
element method (FEM) and the virtual element method have been attempted in [88, 89]. In
[88], author employed the conforming linear finite element method for the discretization of
the non-local coupled parabolic problems.

In contrast to the FEM, the direct discretization of the nonlocal term will not be com-
putable. Using the projection operator, the nonlocal term is discretized which is computable
from the degrees of freedom related to the virtual element space. However, the presence of
nonlocal coefficients in the system not only makes the computation of the Jacobian more
expensive in Newton’s method, but also destroys the sparsity structure of the Jacobian,
consequently causing memory constrains and slowing of data processing, for large degrees
of freedom. Following [90], an analogous approach is employed to rewrite the nonlinear
system, such that the sparsity of the Jacobian is retained. Moreover, a linearized scheme
for the coupled nonlocal parabolic problem is introduced that yields optimal order of con-

vergence in both the space and the time variables. The nonlocal coefficients and the load
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terms can be computed from the previous steps and hence the fully discrete system reduces

to a system of linear equations which can be computed easily.

5.0.1 Notations

Consider a convex polygonal domain 2 C R? where d = 2, 3 represents the dimension
of the domain, with Lipschitz boundary 0€2. We define the final time 7" and the time
interval I = [0, 7). Further, we denote L?((2), the space of square integrable functions

with standard inner-product (¢, 9)q = fQ ¢ dS). For each positive integer s € N, we
1/2
define H*(£2), the Sobolev space with standard norm ||¢||; := ( > HDO‘ngQ> , where

0<a<s

D*¢ denotes o' partial derivative of ¢. Moreover, the function space L*(0,T; H*(2))
consists of function ¢ such that for almost all ¢t € [0, T, ¢(-,t) € H*(Q2) with the norm

T 1/2
Jollsoraon = ([ 19OIF) " 16l = ess supl6(0)l.
0 0<t<T

In addition, we define P, (F), the space of all polynomials of degree less than or equal to k
on E and for a function v, the first and the double derivatives with respect to ¢ are denoted

by Dv, Dyv, respectively.

5.1 The continuous problem

Let fi(u,v) € L*(, 1) be the force functions for ¢ € {1,2}, and u, and vy be the
initial guess for the solutions u, v, respectively. The continuous problem is then given by:
find (u, v) such that for ¢ € [0, 7], we have:

Dyu— Ai(g1(u), g2(v)) Au = fi(u,v) in Q x (0,7), (5.1.1)
Dy — As(g1(u), g2(v)) Av = fo(u,v) in Qx (0,7), (5.1.2)
u(x,t) =v(x,t) =0 on 08 x (0,7), (5.1.3)

u(z,0) = ug(x) on € (5.1.4)

v(z,0) = vo(z) on € (5.1.5)

where g;(w) := fQ Li(z) wd for w(-,t) € L*(Q) for almost all ¢t € [0,7] and I;(z) €
L*(92). Since the diffusive coefficients A’s are dependent on the global behaviour of the
solution, the problem is termed nonlocal.
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Further, we will make some assumptions on the model problem in order to derive the

theoretical estimates in the later section.

Assumption 5.1.

e Fori € {1,2}, Ai(-,-) : R* — R is bounded i.e., 0 < my < A;(-,-) < M, where

mg and M are positive constants.

e A;(-,-) : R* — R is a Lipschitz continuous i.e
|Ai(r1,81) — Ai(ra, s2)| < La(|ri —ra| 4+ |s1 — s2|)  ¥(ri,s) € R x R. (5.1.6)

* Fori € {1, 2}, the right hand side force function, f; are Lipschitz continuous w.r.t. u

and v. i.e.,
| filur,v1) = filuz,vo)| < Lp(luy — ug| + [vr —va|)  Vuy, uz,vi,v2 € R (5.1.7)

Multiplying equation (5.1.1) by the test function ¢ and (5.1.2) by test function ¢ and
employing divergence theorem, we derive the continuous weak formulation: Find u, v €
L*(0,T; Hy () N C(0,T; L*(Q)) and Dyu, Dy € L*(0,T; H*(2)) for almost all ¢ €
[0, T'] such that

@ 0,0) + A1 (). 020)) (V. V) = (i), ) n D(0.7) Vo € V = HY(€),
(5.1.8)
D 0.) + Aags (). 02 0)) (V0. V5) = { oo, ), 0) in D(0.7) ¥ € V = HY(©),
(5.1.9)
uw(x,t) =v(x,t) =0 for (x,t)€ 90 x (0,T), (5.1.10)
u(x,t) =upg(x) and wv(x,t) =wvg(x) for x €, (5.1.11)

where D’'(0,7) is the space of distributions on (0,T) and (-,-) denotes the V'— duality
bracket. The existence and the uniqueness of the weak solution satisfying equation (5.1.8)

to (5.1.11) can be easily proved using Brouwer’s fixed point arguments [91].

Theorem 5.1. Let the assumption 5.1 hold. Then, there exists a unique solution (u,v) €
H(Q2) x HY(Q) of the problem (5.1.8) - (5.1.11).

Using the assumption 2, Schauder’s fixed point theorem and proceeding analogously as

in [91, Theorem 2.1], we get the desired result.
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5.2 Virtual Element Methods

In this section, we consider the necessary assumptions on the mesh elements and dis-
cuss the construction of two and three dimensional virtual element space which were origi-
nally introduced in [26]. Unlike the finite element space, the virtual element space consists
of both polynomial functions and some implicitly defined non-polynomial functions. To
tackle the non-polynomial functions in the evaluation of bilinear forms, we use suitable
polynomial projection operators on the functions of the virtual element space that ensures

computability using only the known degrees of freedom (DoFs).

5.2.1 Mesh Regularity

Let {31}, be a sequence of polytopal meshes consisting of polygonal/polyhedral el-

ements £ or P and let hp/hp be the diameter of an element /P € ¥,; h := glazx hg
€2
and for polyhedron, h := max hp. In continuation, we define e/ C JF /P be an arbi-
€2p

trary edge/face and OF /0P be the boundary of E'/ P. Moreover, we consider the following
regularity conditions on the domain decomposition.

Assumption 5.2.
(T}) E € ¥, is star shaped with respect to every point of a ball of radius greater than y hp.
(T3) for every element E, and for every e C OF satisfies h, > hp.

3) for polyhedral elements 7 C R°, each face I’ C satisfies (77) and (75).
T5) for polyhedral el PCR? h face F' C OP satisfies (7 d (T

where v > 0 is a positive constant.
The following canonical convention of the multi-dimensional space is followed. Lets =
(s1,82,...,5q) and define |s| = s; + 8o + - - - + s4. We denote a element x° € R? d =
2,3 by, x° := (27" 3% ...z}"), and xp be the centroid of polygon E. In what follows,
MUE) = {(X;;‘EY, ls| < k}, d = 2,3 is the set of scaled monomials with M, (E) =
{0}.

Consider the L* projection operator II) ;, : L?(E) — Py(E) defined such that

(Mg —DNu,v), =0 VuePy(E),
and define the elliptic projection operator II} , : H'(E) — Py (E) satisfying,
(VI g —u, Vo), =0 VvoePy(E) and /aE(HZEu —u)dr =0.
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5.2.1.0.1 Two dimensional virtual element space For every F¥ € 7T,, consider the
space W7, (see [26]) defined by,

Wi ={ve H(E)NC’JE) : v, € Py(e)Vedgee € OE, Av € Py(E)} .
Next, we introduce the local virtual element space in two dimensions. Let

1HE(E) ::{vewg : /

E

(MY 50— v)g =0 Vg € Py \ Peo(E) }, (5.2.1)

where P, \ P,_»(FE) denotes the set of polynomials of degrees exactly equal to k£ — 1 and
k.

Now we define a set of DOFs associated with an element u € H*(E) :
* The values of u at the vertices of the element £.

* On each edge e C OF , the moments of u up to order k — 2 i.e.

1
E/uwde Vw € Mj_,(e).

* The moments up to order £ — 2 of u in E i.e.,

1
E/EuwdE, Yw e Mi_,(E),

We see that the above set of DOFs are unisolvent ( see [27, 30, 92] ).

Then the two dimensional global virtual element space is defined as follows

Hy = {v e Hy(Q) | v|p € H*(E) VE € 5} (5.2.2)

5.2.1.0.2 Three dimension virtual element space The construction of the conforming
virtual element space for d = 3 follows an analogous idea as d = 2. For each polyhedral

element P, we define
B} (OP) := {v € C°(OP) : v|p € H*(F)VF C 0P},
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where H*(F) is the conforming two dimensional local virtual element space of degree k

over face F'. Following [27, 93], the auxiliary space is defined as

HE(P) = {w € H'(P) :wlpp € BX(OP), Aw € Py(P);

and (w — TIY pw, q)p = 0 Vg € Py \ Py_s(P) }

where the operator HZ p 1s elliptic projection operator on polyhedral element P. Further, we
define the DOFs associated with a function « in the virtual space H’“(P) (see [30, 92, 93]):

The values of u at the vertices of the element P.

On each edge e C 0P, the moment of the function u up to order k£ — 2 i.e.

1
|?l/ucude Vw € M;_,(e).

The moments up to order k — 2 of u on each face F' C 0P .

1
m/FwolF, Vw € M;_,(F).

The moments up to order k — 2 of u in P i.e.,
1 3
— [ uwdP, Vwe M _,(P).
Pl Jp

Finally, the global conforming virtual element space is defined as:
Hy = {ve HY(Q) :v|p € H'(P) VP € %}

Hereafter, we will not make any difference between £ and P.

Remark 5.1. Tt can be observed that the local virtual element space H*(E) has the same
number of DoFs as [26] with an added advantage that the L? projection operator Hg, g 18
computable on H*(E) [27]. The L? projection operator is used to discretize the nonlocal
term and the non-stationary part of the model problem that will be discussed in the later

sections.

Next, we introduce the discrete bilinear form ay(-, -) and my(+, -) corresponding to the

continuous form a(-, -) and m(-, -) respectively. Since, the virtual space contains polyno-
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mial and non-polynomial functions that are not available in a closed form, we employ the
projection operators, IT) ; and IT)/ ;; to discretize the bilinear form.

First let us consider the symmetric bilinear forms SZ(-,-) and SE (-, -) that are positive
semi-definite and definite, respectively, on HF x H¥ and are such that, there exist positive

constants «y, ap, 31, B2 such that

ar a”(v,v) < SP(v,v) < az a”(v,v) Yo € H¥(E) NKer(IT) z)
B1 (w,w)g < SE(w,w) < By (w,w)p Yw € H(E)N Ker(Hng).
It can be observed that SZ(-,-) or SZ(.,.) reduce to zero when one of the entries is a

polynomial. Then the local bilinear form a?(-,-) : H*(E) x H*(F) — R and my,(-, ) :
HE(E) x HF(E) — R are defined as follows:

af(w, V) : aE(H,ZEw, HZEU) + Sf(([ — H,ZE)w, (I — H,ZE)U) Yw,v € Hk(E),
my; (w,v) := (I} pw, I} yo)p + S5 (I =10} gw, (I =11} plv)  Vw,v € H*(E).

(5.2.3)

Amongst the different computable forms of the projection operators available in the litera-

ture [28], we choose the following representation:

dof dof
N N

Sh(¢,) = hy > dof.(¢) dof.(¢), and SF(¢,v) = h%‘2§:dofz(¢) dof. (¢),
z=1 z=1

where d is the dimension of the space, and N&' denotes dimension of the local space
H*(E). The local forms (-, -) and m¥(-, -) satisfy the following two properties :
Polynomial consistency: For an element £ € Y, 0 < h < 1, the bilinear forms
af(.,-) and m¥(-,-) defined in (5.2.3), satisfy the following consistency properties:
a?(p,v) = a¥(p,v) Vp € Pu(E), Yve H"E)

(5.24)
mi (p,v) = (p,v)p  Vp € P(E), Yve HE).

Stability: There exist four mesh independent positive constants, a*, a,., 8%, B, independent
of the element E such that for all v € H*(E), aZ(v,v), and m¥(v,v) are bounded by
5

a”(v,v) and (v,v) g, respectively, i.e.,

o, a¥(v,v) < af (v,v) < o a¥(v,v);

) (5.2.5)
Bulv,v)p < my(v,v) < B(v,0)E
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hold. Condition (5.2.5) ensures that the non-polynomial parts SZ(--) and SZ(-, ) scale
same as polynomial parts of a” (-, -) and mf (-, -), respectively.

Adding the local contributions, the global form ay,(-,-) : Hf x HF — R and my(-, ) :
HY x Hf — R are defined as

ap(w,v) = Z a?(w,v) and my(w,v) = Z my (w, v) Vw,v € HY.

Eecxy EeXy,

Remark 5.2. To discretize the bilinear form a(-,-), we have employed H,Z  operator.
However, the term a”(-, ) can be discretized by employing the external projection operator

9_, ; [28].

Remark 5.3. In this work, we use the projection operators’ matrix representation to evaluate
the matrices corresponding to the bilinear forms ay(-,-) and my(-, ) respectively. This
matrix representation depends on the order of the space and shape of the element £, but
is independent of the size of the element. Therefore, the matrices remains unchanged for
any transformations that preserves the shape of £/. However, this inspection is not true for
higher order virtual element space. [29, Remark 3.5]. We compute the matrices following
the procedure highlighted in [29].

5.2.2 Semi-discrete formulation

Using the discrete bilinear form, the semi discrete formulation of (5.1.8)-(5.1.11) is
defined as: find (up(t), vy (t)) € HE x HF for all most all ¢ € [0, 7] such that

mp(Dyun, o) + A1(gr (), g2 (T%03)) an(un, on) = (fin(un, vn), on)  Von € HE,

(5.2.6)
mu(Dyvn, ¥n) + A2 (g1 (IRun), g2(Iwn)) an(vn, ¥n) = (fon(un, o), ) Viby, € Hy,
(5.2.7)
where
(fin(un,vn), on) = Z /f1(H2,Euh, 11 o) 11 peon dE,
EeXy, E
(5.2.8)
and  (fon(un, vn), ¥n) = Z /fQ(H%EUh, 1) pon) 1), g dE.
EeZh E
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The scheme (5.2.6)-(5.2.7) constitute a system of differential equations. Since the model
problem satisfies assumptions 5.1, we deduce that the nonlinear system of equations (5.2.6)-
(5.2.7) has a unique solution for ¢ € [0, 7], where T} < T'. Such a solution can be extended
to [0, T'] following the boundedness property of the discrete solutions. Let C' be a generic
positive constant that is independent of mesh diameter & and £, which takes different val-

ues at different instances.

Theorem 5.2. Let the discrete solutions (u),v)) € H}(Q) x Hg(Q) and the two force
functions fi(u,v), fa(u,v) € L*(0,T, L*(QQ)), then, the solution of (5.2.6)-(5.2.7) (up, vy)
satisfies the following boundedness property

HUhHLOO(O,T;LQ(Q)) <, ||Uh||L°°(0,T;L2(Q)) <C,
HDtvhHL?(o,T;m(n)) <C ||DtUh||L2(0,T;L2(Q)) <C.

Proof. We consider the semi-discrete formulation (5.2.6)-(5.2.7). Upon choosing ¢, = uy,
in (5.2.6), we obtain

1d

§£mh(uh7uh) + Al(gl(ngh)aQQ(Hgvh)) an(un, up) = <f1h(uh7 Un), Uh) (5.2.9)

Using assumption 5.1, triangle inequality and continuity of operator I1?, we can get

”fl(ngfw Hgvh)HO = ||f1(H2U’h’ Hgvh) - f1<07 0) + fl(o’ O)HO
< Lp (llunllo + [Jvrllo) + [1f1(0,0)o. (5.2.10)

An application of Cauchy-Schwarz inequality, boundedness of operator II{, Young’s in-

equality and (5.2.10), we obtain

| (Fun(un, vn) un) | < 5 (1L (TRun, Ion) 16 + luslls) < C(IIUhHﬁ + [lollo + ||f1(0,0)\|§)- (5.2.11)

N | —

Substituting the estimation (5.2.11) into (5.2.9), we have

DO | —

d
e 2 Iunlls + mo [ Vunlly < €l + onl3 +1£:0,0)13). - 5212

In the analogous way, we obtain

1 d
_5*%

SBelonlly +mo aulVunl} < € (lunlld + onlld + 100, 02). 52.13)
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Adding (5.2.12) and (5.2.13), we have

1 d
5 B 2 (lunllg + [[onllg) + mo e (I Vunl§ + [[Ven]l6)

(5.2.14)
< C(1lnll3 + llewl3 + 1720, 0)13 + [1£2(0, 0)[13).

Integrating both sides of (5.2.14), and on application of Grownwall’s inequality, we obtain:

t
(O + 1n(O1) + Clono, Buvar) [ (1Tl + [Vl )
0 (5.2.15)

< (g1 + 19313 + 140,003 + 1£:(0, 013 ).

for all ¢ € [0, 7] which implies that ||| Lo (0,1:12(0)) and ||vp]| £oo (0,7:22(02)) are bounded.
In order to bound the term || Dyul| r20,r;r2(0)) < 00 and || Dyv||p2(0.7:22(00)) < 00, We
choose ¢, = Dyuy in (5.2.6) and ¢y, = D;vy, in (5.2.7), and proceed as above similar to the

line of proof of ||u||2(0,7:12(2)) < 00 and ||vy || L2(0,7:02(0)) < 0©. O

5.2.3 Fully Discrete Scheme

We employ the virtual element method and backward Euler method for discretizing the
space variable and the time variable, respectively. To this end we consider a partition of
non-overlapping sub interval [t,,_1,t,] of [0,T], where n = 0,1,2, - -+ , Ny with time-step
At" :==t, —t,_1 such that T = Egio At". To reduce the computational complexity let
At" = At for all n, i.e equal time steps. Let {(U", V") },,en be a sequence of approxima-
tions of (u, v) at time ¢ = t,,. Then the fully discrete scheme of (5.1.8)-(5.1.11) is defined
as:
foreachn =1,2,3....., Ny, find (U™, V") € HF x H¥ such that

Un _ Un—l
mp, (—, %) + A1 (IU™), g2 (V™) an (U™, o) = (f1a(U™, V"), 1),

At
(5.2.16)
vyt 07 I . "
(i )+ Al (U (V) (V™) = U,V )
(5.2.17)
U = I(u(ty)) V"= Li(v(t)), (5.2.18)
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where U° and V° are initial approximation of u and v at time ¢ = 0 respectively. The
discrete scheme (5.2.16)-(5.2.17) reduces to a system of nonlinear equations which can be
solved by employing iterative methods. To reduce the computation cost, we incorporate
the technique introduced in [90]. A detailed implementation procedure will be discussed
in subsection 5.2.5.

In addition to this, we would like to introduce a linearized scheme for the weak formu-
lation (5.1.8)-(5.1.11). Here, when the unknowns are computed at time ¢,,, the nonlocal
diffusive coefficients and the load terms are computed at the previous time-step ¢,,_;. We

present the linearized scheme as follows:
foreachn = 1,2,3....., Ny, find (U™, V") € H¥ x H* such that

Un 1 . . .
( ) A (@ (T, go(TT™)) an (T, )
<f1h (ot vnh, soh> Yoo, € HE, (5.2.19)

Vn Vn ! 07rn—1 07rn—1 Tn
mp | ————Un | + A2(n (ILU" ), g2 (I V")) an (V" 40n)

= <f2h(U"*1, Vnil)ﬂ/}h> Vb, € Hy (5.2.20)
U° = I (u(ty)) VU= I(v(ty)). (5.2.21)

The discrete formulation (5.2.19)-(5.2.20) reduces to system of linear equations that can be
solved by a linear solver directly. Let A and B be the matrix representation of the bilinear
forms ay(-,-) and my(-, -), which are positive semi-definite and positive definite, respec-
tively. Further, let 8, := A; (g1 (112U 1), go(II2V™ 1)) and 6, := A (g1 (II0U™ 1), go(IIOV 1)),
Then, both the matrices B + Atd,A and B + Atd, A are invertible that ensures unique
solutions to the system (5.2.19)-(5.2.21). Further, in Section 5.5, we will show that the ap-
proximation ((7 " ‘7”) converges to the analytical solution with an optimal order in both the
space and time variables. The rate of convergence depends on the initial approximation of
the solution, i.e. (U 0 VO). Therefore, the initial guess could be chosen as an interpolation

of the analytical solution at ¢ = 0.

5.2.4 Existence and uniqueness of the solution for the fully discrete

scheme

Here, we shall use the following variant of Brouwer’s fixed point theorem to ensure the

existence of a solution for the discrete problem (5.2.16) - (5.2.18) and its uniqueness will
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be proved by the method of contradiction.

Theorem 5.3. (Brouwer’s Theorem) Let IC be a finite dimensional Hilbert space with inner
product (-, -)x. Let g : K — K be a continuous function. If there exists a constant, R > 0
such that (g(2),z)c> 0 for all z with ||z||[x= R, then, there exists a z* € K, such that
|2*||xc< R and g(z*) = 0.

Remark 5.4. Let us define an inner product [( X1, Y7), (X2, Y5)] :== (V X1, VX3)+(VY], VY,).
Then it is well-known that 7 x H} is a finite dimensional Hilbert space with respect to
[-,-] and the induced norm |||(X, Y)||| := [(X,Y), (X,Y)]z.

Theorem 5.4. Let 0 < n < Nt and assume (U‘], VJ) € Hﬁ X Hﬁ to be the given unique
solution of the system (5.2.16) - (5.2.18) for 0 < J < n — 1. Then for sufficiently small At,
the system (5.2.16)-(5.2.18) has a unique solution (U™, V™) € ’Hﬁ X Hﬁ at time t,,.

Proof. We shall prove that the discrete system (5.2.16) -(5.2.18) has a solution (U™, V")

and that the solution is unique at ¢t = ;. For this reason we define a map
L: H;ﬂl X HZ — HZ X Hz such that ,C(Wl, WQ) = (;Cl(Wl, WQ), ﬁg(Wl, Wg) ),
where L;(W;, Ws) € Hﬁ fori=1,2 and satisfies,

( V»Cl(Wl, WQ)v VSO) = mh<W1, SOh) + AtAl (91 (H2W1), QQ(H(;WQ)) a’h(Wh Sph)
— (A frn(W1, Wa), on) — mp (U™ o) Vo € H.
(5.2.22)

and

(VLW Wa), V) = my,(Wa, ¥y) + At Az (g1 (TRW1), g2 () W2) ) an(Wa, 1y,

— (AL fon (Wr, Wa), ¥n) — mu (V" ) Yy € Hy.
(5.2.23)

For each (X,Y) € Hf x HJ, let us define T'xy : Hf — R by

Txy(¢n) = mu(X, on) + At A (1 (I X), g2(IRY)) an (X, n)
- (At) <f1h(X’ Y)’ ()Oh> - mh(Un_lv @h)'

Note that for each (X, Y) € HE x HF, the corresponding T'x y is a bounded linear func-

tional on H} ( follows, since the bilinear form my, (-, -), ax (-, -) are bounded, and the nonlo-
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cal term A, (-, -), the force functions fy; is Lipschitz continuous ). Now, using Riesz repre-
sentation theorem, there exists a unique Qxy € H¥ suchthat Txy (pn) = (VQx.y, Vion).
The correspondence (X,Y) — Qx y, gives the well-defined mapping £, : HF x Hy — HY
satisfying (5.2.22). Analogously we can obtain the mapping L is also well-defined.

First we prove function £ is continuous on ”Hﬁ X Hﬂj Consider a vector (X1,Y]) €
HE x HE. For some (Xy,Ys) € HF x HF, denote L = L(X,Y1) — L(Xo,Ys)(:=
(6,7) say ). Then using (5.2.22) and (5.2.23), we have,

2

= [L(X1,Y1) = L(X2,Ys), L] = [L(X1, Y1), L] — [£(X5, Y2), L]
= (VLi(X1,Y1) = VL(X2, Y2), VO ) + (VLy(X1, Y1) = VLy(X,, Y2), VT)
= mh(Xl — X, @) + At-Al(gl(ngl)agZ(Hgyl» ah<X17 @)
—At Ay (g1(I1) X5), g2 (110Y2)) an (X2, ©) + (AL fin(Xa, Yo) — f1r(X1, Y1), ©)
+mp(Yr — Yo, T) + At Ao(g1(I1)X1), g2(I1)Y1)) an (Y1, T)
— At As(g1(TT) X5), g2 (T10Y3)) an (Yo, 1) + (AL fon (X2, Ya) — fon(X1, Y1), T)
(5.2.24)

Using (5.2.5), Cauchy-Schwarz inequality, Holder’s inequality, Young’s inequality and

Poincaré inequality ( with constant C'p), we get

IN

IN

IN

IA

IN

IA

mp(X1 — X2,0) +my (Y1 — Y2, T)
> BIX = Xallo |©]lo + 1Y1 = Yallo [T ]]o)

1259
8 % (1% = Xallo + %3 = Yallo) (€10 + 1T o)

Eeyz,
5 (5 (1% = Xallo+ Vi = %allo)* )" (52 (01l + 1T }o)?)”

Eey, Eey’,
26 (3 (1% = X3+ Vi - al8) )" (X2 (18l + 11 )’

Eecy >, Eey,
26 C3 (30 (IV(X = %) 3+ IV = %)) (52 (IVelR+IvT(3) )
Ecy, Eey 3,

28" C3 |[(X1 = X2, Y2 = Y2)[[| ||l (5.2.25)

Let/] := At Al (91 (HgXl), gg(Hg}/l)) Cl,h(Xl, @)—At ./41 (91 (Hng), 92<H2Y2)) Clh(XQ, @)
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Adding and subtracting At A, (g1 (112 X5), g2 (T19Y5))ay (X1, ©) to 11, we get

11 = At (Ao (), a(T3) = As (90 (TTX), 2(T1RY2)) ) (X1, ©)
+At Al(gl(H2X2>a 92(H2Y2)) ah(Xl — X, @)-

Using Assumption 5.1, (5.2.5) and Poincaré inequality, we get

I < At (LA Cr([[V(X1 = Xa)[lo + V(Y1 = Y2)llo) " [[V X1l [[VO]lo

+M " V(X1 = X2) o IVO)lo )
< (X0 (VX = Xa)lo + V(Y = Y2)llo) (1Yo + [9Tll), (5.2.26)

where C(X1,Y]) := At (La Cp o ||[(X1,Y1)||| + M o). Similarly,

IIT = At Ay(gi(TIRX1), g2(TIY7)) an(Yr, ) — At Ay (g1 (T19.X5), g2(TINY3)) an (Y, )
< C(X, ) (VX1 = Xo)llo + [[V(Y1 = Y2)[lo) ([[VOIlo + [[VY o). (5.2.27)

Adding (5.2.26) and (5.2.27) we obtain

4111 < 200X, 1) (VX3 = Xo) o + V(Y1 = Y2) ) (IVO]o + [ 9Tl
< 40(X0 Y1) [0 — Xa Yy — V)L (5.2.28)

Using assumption 5.1 and Poincaré inequality, we have

(At)(fin(X2, Y2) — fin(X1, Y1), ©) + (At){ fon (X2, Y2) — fon(X1, Y1), T)
< LpCE(|IV(X1 = Xa)llo + V(Y1 = Ya)[lo) (IVOllo + IV lo)
< LpCp2||(Xy — X2, Y1 = Ya) ||| [I|L]]]- (5.2.29)

Substituting (5.2.25), (5.2.28) and (5.2.29) into (5.2.24), we obtain

I£(X1, Y1) = L(X5, V)| < (2ﬂ* CP +4C(X1, Y1) + 2Ly Cf») (X1 = X5, Y1 = Yo)|]. (5.2.30)

€
20 C% +4C(X1, Y1) +2Lp C3
Then for (Xy,Ys) € HE x HE whenever |||(X1 — X2,Y) — Ya)||| < 6, (5.2.30) implies

| L||| < €. This proves L is continuous.

Hence, given (X1,Y)) € HixHE and e > 0, choose § =
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Consider any (Z, Zo) € HE x HE with

34405 IO V)
C (B + Atmoay,)

11(Zy, Zo) ||| = ' R. (5.2.31)

Next, we derive that [L£(Z1, Zs), (Z1, Z2)] > 0. Note that
[E(Zl, ZQ), (Zh ZQ)] = ( Vﬁl(Zl, ZQ), VZl ) + (VLQ(Zl, ZQ), VZQ )
Using (5.2.22), we obtain:

(VLi(Z1,25),NZ1) = (21, Z1) + At A (g1 (110 2Z1), go(I1) 25)) an(Z1, Z4)
— At fin(Z1, Zs), Z1) — mh(Un_la Z1)
> BlZi§ + Atmg o, [V Z4 5 — C(LF)At<||Zl||0 + | Za]lo

0,01 Zullo = 8 17" o 1Z3]lo (5232)
Similarly, from (5.2.23) we derive

(VLZ1,25),N2Zy) = mu(Zs, Zo) + At As(g1(I1§ Z1), go(11§ Z2)) an(Zo, Zo)
~ At (fon(Z1, Zo), Zo) — mup (V"1 Zy)
> BullZoll§ + At mg o [V Zs |5 — AtC(Ly) (HZ1H0 + 1| Z2[lo

HEO,01) 1220 = 8 IV o |1 Zello. (5:233)

Adding (5.2.32) and (5.2.33), and using equivalance of norms || - ||o, ||V - ||o on H}, we

have

£(Z1, 22), (21, Z)] 2 C (B + Atmoa, ) (IVZi|; + |V 2 2)
—AC(Le) (2V2(IV 213 + 9 ZaIR): + 1£1(0,0)] + 1£2(0,0)1) (IVZ13 + [V Zal3)*
—2C 8" (IVU B+ VvV )2 (IVZ5 + [V ZI3)2
> [1(Z1, Z2)lIl | C (B + Atmoa) (21, Zo)| = AtVIC(Lr) ( 2v2 (21, Z0)])
HAO,0)+ 1/0,0)) =28 @, v Y]
R [C(ﬁ*+Atm0a*)R—At\/§C(LF)<2\/§R+]f1(0,0)1+]f2(0,0)|)
—20 8" @ v (use(52.31))

v
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Choose (At) sufficiently small such that
At \/§C(LF)(2\/§R+ 1£2(0,0)] + ny(o,O)y) <1.
Therefore,
(£(20,22), (70, 22)] = R|C(B.+ Atmoa) R = 1=2C8" ||, v 1)[].

Hence, using (5.2.31) we obtain [L£(Z1, Z2), (Z1, Z3)] > 0forall (Z,, Zs) with ||[(Z1, Zo)||| =
R and for sufficiently small values of At. Then, by Brouwer’s fixed point theorem, we can
assure the existence of a (U™, V™) € H¥ x Hy with L(U™, V™) := (0, 0). Then substituting
L1(U™, V™) =0in (5.2.22) and Lo(U™, V™) = 0 in (5.2.23) implies that (U™, V™) solves
the system (5.2.16) - (5.2.18) att = t,,.

Now, we will prove the uniqueness. Let (U, V") and (U3, V') € HE x HE be two
solutions of (5.2.16)-(5.2.17) at the n'" time step. Then, from (5.2.16), we have
(U} = U3, on) + At (g1 (TEUT), ga(TEVYY) ) an(UY, on)
— A (g (TTEUZ), g2(TT6V3) ) an(U3 on) + A (U5, VE) = funUF, V1Y), on) = O,
(5.2.34)

In an analogous way, we derive

(V' = V2 un) + AtAs (g (TIRU7), ga(TIRVY) ) an(V7", )
— At A, (91(H2U§1)7 92(H2V2n)> an(V3's thn) + At for (U3, V3") = fan(UT, V1"), ¢hn) = 0.
(5.2.35)

For better readability, we introduce the following notation: 7 := U — Uy and x =
V" — V3. Further, we choose the test function ¢, = 7 and inserting in equations (5.2.34),

we have

ma(7, ) + At A (g (TR07), g2(TRVE") ) an (U, 7)

— AtA,; (91(H2U§1)792(H2V2n)> an(Uy', 7) + At(fin (U, V5") — fin(UL, VI"), 7) = 0.
(5.2.36)

An application of Cauchy-Schwarz inequality, Lipschitz continuity of f; from assump-
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tion 5.1 and the boundedness of the projection operator I19, yields
U3, V) = @ V), 7)1 < C L (7l + Dixclo) el (52.37)

Adding and subtracting A; (gl(HSU{l), gg(HISV{L)> an (U3, T), we rewrite the difference of

the nonlocal terms in the following way:

Ay (91U, g2(TRVE) ) an (U7 7) = A (90 (TRUZ ), 02TV ) (U, 7)

= Ay (g (IU7), ga(IV!) ) an (U} = U 7)

T (5.2.38)
+ (A1 (90 (MU, (V) = Ay (00 (T007), g2 (I0V3) ) ) an(U7)
:;;'2

Using assumption 5.1 on A, (-, -), Cauchy-Schwarz inequality and the boundedness of the

operator I1?, we obtain
moa [V < Ty and  |Ta| < CLa (7]l + lIxllo) VU o [[V7lo.  (5.2.39)
Substituting (5.2.37) and (5.2.39) into (5.2.36), we derive the following result:

ma(r,7) + (A1) mo a. V7113 = € (A (Imllo + lixlle) (Il + 1¥7) <.
(5.2.40)

Using analogous techniques as (5.2.40), we derive from (5.2.35),

(6 X) + (A8 mo e [VXIR=C (82) (Irllo+ Ixllo) (Ixllo+1Vxlo) < 0. 5:2.41)

b2
Note that using the inequality ab < € a®>+— (with e =
€

2a% + 2b%, we have

0 %) and the inequality (a+b)? <

4 2 Mmooy 2
(Irls + o) (Imllo + 197lo) < ——(lirllo + lIxllo)~+ === (IIllo + I771lo)
8 mo Qs
< —— (Il + ) + == (7113 + 19 7113)
mo Oy
< Culaw,mo) (II7113 + ) + =5 1V7].

(5.2.42)
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Similarly,

mo Oy

2

(I lo + Ixllo) (Iixllo + 190} < Coleveymo) (11713 + 1x1) + 222013 (5:2.43)

Upon adding (5.2.40) and (5.2.41), using the stability of 7, (-, -) as in (5.2.5) and (5.2.42)-
(5.2.43), we yield

(8. = Culaw,mo)At) 713 + (8. = Culaw, mo) A ) 13
At mg o
2

(5.2.44)
(V75 + IVxlls) <o0.

Neglecting the terms ||V 7||2 and ||V x||? and choosing At sufficiently small, we derive
I7llo + lIxllo < 0. (5.2.45)

which implies 7 = 0 and x = 0. U

Remark 5.5. In Theorem 5.4, we have proved the well-posedness of the fully discrete
scheme at time ¢,, based on the assumptions that the fully discrete scheme has unique

solution at each previous time steps, say t = tq, - ,t,_1.

5.2.5 Implementation of the scheme

The fully discrete formulation (5.2.16)-(5.2.18) can be solved employing Newton’s
method. However, the presence of the nonlocal coefficient reduces the sparse structure
of the Jacobian of the nonlinear system, thereby increasing the computational cost. Since
our model problem contains a coupled system, the computational cost is twice. In or-
der to avoid this difficulty, we incorporate the idea provided in [90]. The fully discrete
scheme (5.2.16)-(5.2.18) can be rewritten as

mu(U", on) + (A1) Ay (g1 (IRU™), g2 (IRV™))an (U™, o) = (AL) (fin(U™, V"), 0n) +mp (U™, 04),
mu (V"™ n) + (A1) Az (g1 (IRU™), g2 (IV™)an (V"™ 4hn) = (AL) (for (U™, V™), 0n) +ma(V" 1hp).

We introduce two new independent variables and rewrite the equation in the following way,
let d; = ¢;(TTYU™) and dy = go(TTI{ V™). Then, the above equations reduce to the following

non-linear system,
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mp(U", on) + (At) Ai(d, do) an(U", on) = (AL) (fin(U", V™), 0n) +ma(U", on),
mp (V" n) + (A1) Ag(dr, d2) an (V" 00n) = (At) (for (U™, V"), ) + ma (VI ),
dy = g (TT,U™)

dy = go(TIOV™). (5.2.46)

The Jacobian of the system (5.2.46) will be of the form

A 0 Cy Dy
0 By Cy Do

As 0 C5 0
0 By 0 Dy

J:

2Ndof 22 Ndof 49

where, N%f represents the total number of degrees of freedom of the global virtual element
space HF. In what follows, we define the residual of the fully discrete system (5.2.46) as

Flj = mh(U ) (At)./h(dl, dg)ah(Un,@U])
(At)<flh(Un n)7 ’lvbj) - mh(Un_la %) 7 1 S ] S NdOfa
Fyy = mp(V™ 4y) + (At) Az(dy, d2)an(V", 1)) (5.2.47)
— (A (fon (U™, V™), 405) —mn (V") =0, 1< < N
Fiyaiyy = gi(IINU™) —dy =0, and  Fyywiyy = go(IINV") —dy = 0.
Let us define,
Ndof Ndof

Ur = Z 06?77/)“ and V" = Z /aniﬁz,
i=1 i=1

where B := {¢1,...,%nw} forms the canonical basis of the finite dimensional space
HF(E), and of, and 8" are unknowns. Further, the entries of the Jacobian matrix are
given by:

OFy; o o
(A1) = 804175 = mu (i, ;) + (A A (dv, do)an (Wi, 0;), 1 <i,j < N,
6F1j 8-/41 (dh d2) n . dof
L= ) - - 27 . <171 <
(Cl)lj 8d1 (At) adl CLh(U 7¢])7 1 7> N )
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OF,; DA, (dy, ds)

Dq); = = (A o 1< 4 < Ndof
OFy; . N
(B2)ij = 2 — mn (P, 05) + (ADAg(dy, do)an (i, ), 1 <4, < N
IB;
8F2j 8A2(d1, dg) . dof
= — 2\ L) n b < i< N
(02)1J 8d1 (At> adl CLh(V 777Z}j)7 1 >7] > N )
OF,; 0As(dy, ds) _
Dy)y: = J — (AL e no 1< j < Ndof
A Orrn
(As)u = aFéNitH = 8glgHIZU ), 1<i< N
Q; @
aFlNdof+1
— DN g
O = ey,
0y/n
(By)u = aFgg;fH = 892(81_;;‘/ ), 1<i< N,
o aFQNdof+1 .
(D4>11 = 8—d2 = 1.

Theorem 5.5. Let assumption 5.1 and assumption 5.2 holds. Also assume that (U™, V"™, d;,ds) €
HE x HE x R x R be the solution of the system (5.2.46), then (U™, V™) € HE x HE be

the solution of (5.2.16)-(5.2.17). Conversely, let (U™, V") € Hf x HF be the solution of

the system of equations (5.2.16)-(5.2.17), then (U™, V" dy,dy) € H',i X 7-[2 X R x R be the
solution of the system (5.2.46).

Proof. Proceed similar to proof of Theorem 4.1 in [91]. [

5.3 A priori error estimate for semi-discrete scheme

In this section, we establish a priori error estimate for the semi discrete scheme in the
L? and H' norms. It is observed that the direct computation of the error ||u(t) — up(t)lo +
|v(t) — vi(t)]|o may not be straightforward to bound. To achieve the goal, we introduce the

Ritz projection operator Ry, : H'(2) — HYF that is defined as
an(Ryu,w) = a(u,w) Yw € HY(Q). (5.3.1)

The Ritz projection operator R, directly follows from the coercivity and boundedness of

the bilinear form ay,(-, -) and the continuity of the function a(u,-) on HF. Employing the
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projection operator R, we bisect the error u(t) — up(t) and v(t) — vy (t) into two parts as

w(, ) —un (- 8) = ul 1) — Ryu(t) — (~Ryu(t) + up (-, 1)), (5.3.2)
0(,1) = vn(-, 1) = 0(, 1) = Rao(t) — (~Ruv(t) + va(-,1)) (5.3.3)

Using the approximation properties of R;, we bound the term pi, 14;. To bound the
other terms po, (12, we use the semi-discrete formulation (5.2.6)-(5.2.7) and the approxima-
tion properties of the projection operators on the polynomial space that will be discussed in
forthcoming theorems. Next, we introduce the approximation properties of the polynomial

projection operator u, (refer [94]).

Lemma 5.1. Consider that assumption 5.2 holds on the discretized domain. Then, for all
E € X, where0 < h < 1,andv € H*(E), where 1 < s < k+1, there exists a polynomial
Ur € Pr(E) such that:

v = vrllo.g + hel|Vv = Voo < C b [v]s.k, (5.3.4)
where, the positive generic constant C' depends on the mesh regularity parameter -, order

k of the polynomial space Py(E), but is independent of the mesh size h.

Let [, be a interpolation operator on the virtual element space H¥. For each element
E € Y, and for v € H' (), there exists an element /[Fv € H*(E) such that:

dof;(v) = dof;(IFv) 1<i < NE,

where, N denotes the total numbers of DoFs in H*(E). The global interpolation operator
I, is defined such that it is reduced to IZ when restricted to an element E.i.e. I,|p = IF.
The approximation properties of the global interpolation operator is now presented below
(see [30)).

Lemma 5.2. Let assumption 5.2 hold on the discretization of the computational domain 2.
Further, we assume that v € H*()). Then, for 1 < s < k+ 1, the following approximation
property holds

v — IFv|log +h||Vv — VIFv|op < CR|v|sp, (5.3.5)

where the constant C depends on mesh regularity parameter -y but is independent of h.
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Using the interpolation operator /;,, we can prove that the Ritz projection operator ap-

proximates optimally .

Lemma 5.3. Let u € H*(QQ). Then, there exists an unique functions Ryu € HY such that

u—Ruull, < ChPu , a=0landa < <k+1. (5.3.6)
B

For interested readers, we refer to [95, Lemma 3.1] for a detailed discussion. Now we
prove optimal order convergence results for the semi-discrete virtual element formulation

(5.2.6)-(5.2.7), with respect to L? norm and H'! semi-norm.

Theorem 5.6. Let (u(t),v(t)) € H}(Q) x HY(Q) be the solution of the system (5.1.8)-
(5.1.11) and let (uy(t),vn(t)) € HE x HF be the discrete solution of the problem (5.2.6)-

(5.2.7). Further, assume that ||u|| 2 r;mr+1(q)) < 00,

0| 20,7151 () < 00

DtUHLZ(O’T;Hlvkl(Q)) < oo, and Hf(u,v)HL2(O’T;Hk+1(Q)) < Q.

Then, for almost allt € (0,T), there exists a positive constant C which depends on the mesh

HDtU/HL2(O’T;Hk+1(Q)) < 00,

regularity parameter -y, the order of the virtual element space k, the stability parameter of
the discrete bilinear forms ay(-,-) and my(-,-), but independent of the mesh size h such

that, we have

[un(t) = w(®)lo + l[va(t) = v(®)llo < C( |un(0) = u(0)[lo + [[vn(0) — v(0)||o>

+ O <|U(0)|k+1 + [(0) e41 + Nl 20,2541 @)y + 1Vl 20,15+ 1 (@)) + [ Dettll L2 (0,751 (02))

+ ||Dt’UHL2(07T;Hk+1(Q)) + Hfl(u, U>||L2(0’T;Hk+1(g)) + Hf2(u7 U)HLQ(O,T;HHl(Q))),

where the initial guess up,(0) and vy, (0) are chosen as up,(0) := Iu(0) and v, (0) := I,v(0).

Proof. Using the semi discrete scheme (5.2.6)-(5.2.7) and (5.3.1), we have

mp(p2, on) + At A (gl(ngh),gﬂH%Uh)) an(p2, on) = (fin(un, vn), on) — (f1(u,v), on)

—mp(DyRyu(t), on) + (Deu(t), on) + <A1(91(u)7 92(v)) — A (g1 (), 92(H2Uh))> a(u(t), pn).
(5.3.7)

Using the approximation property of the L? projection operator IT} and the assumption 5.1,
we have [96, Theorem 4.2, (23)]
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|(fin(un, vn), on) — (fi(u,v), on)| < C(Lﬂ(h’““ ulisr + B 0l + 5w, 0) g

= willo + v = wallo) lpnllo (5:338)

Moreover, since the nonlocal function A (-, -) satisfies assumption 5.1, and using the ap-

proximation properties of the L? projection operator I19, we derive the estimation

| A1 (g1(w), g2(v)) — Ar(g1 (TR un), g2(TTvn) )|
< C(La) (A g + B ol + = unllo + [[o = wnlo) (53.9)

Using the polynomial consistency property of the bilinear form my,(-, -) and approximation

properties of the L? projection operator and the Ritz’s projection operator, we derive [95]
| — ma(DRuu(t), on) + (Deu(t), gn)| < C B Dol @nllo- (5.3.10)
Substituting ¢;, = p2(t) in (5.3.7) and using the estimations (5.3.8) - (5.3.10), and the
stability property of ay(+,-) and my(-, -), we have
1d
2dt
= wnllo+ llo = vllo) lpa(®)llo+ € (A" fubs + B folus

Bullo2(I§ + € mo au[Vpa(t) 5 < C (hk“!u\kﬂ + B ol + R fu(u, )

Hlw —unllo + v = Uh”()) 1Au()llo lo2()llo + C B [ Dyl [lp2(t) 0. (5.3.11)

Further, we decompose the error u(t) — uy(t) in the rhs of (5.3.11) into p; (¢) and p2 (), and
v(t) — vp(t) into pq (t) and po(t) and using Lemma 5.3, we derive

1 d
= 0B EHW@)H% + Co. mo ||Vpa(2)]|5 < C(HP2H0 + [lpzllo + A5 ulprr + B ol

2
B |y, 0) g+ B Dl ) oo (8 o

Using Young’s inequality and integrating both sides from 0 to ¢, we have
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t t
o0 = 2O + Clet o) [ 19 < CEI( [ Ul + lia(s) 1)
0 0
+C(5*)h2k+2(HuHil(o,t;HHl(Q)) F 10l 0 g1y + 11 ( 0) 121 0 o1

+||Dtu||i1(0,t;Hk+1(Q))>‘ (5.3.12)

Using analogous arguments as (5.3.12), we obtain from (5.2.7)

t t
a1 = 120V + Clae o) [ 19a(o) s < €[ () + a1
+C(B.)h*+? (Hu”%l(o,t;H]ﬁLl(Q)) + "U‘yil(o,t;Hk+1(Q)) + || fa(w, ’U)Hil(o,t;H’“rl(Q))

+[|Dev H%l(o,t;mﬂ(m)) : (5.3.13)

Upon adding both the equations (5.3.12) and (5.3.13), and neglecting the terms f;(HVMQ(s) 12+
[V (s)[12) ds we get:
t
125 = 112015 + llo2(B)115 — llp2(0)I5 < C(/O (lp2()11g + ll2(5)115)

+ W (lulzasass o + 1015 0asarnss oy + 1720 ) 2s o s

+ || f1(u, U)H%l(o,t;Hk"'l(Q)) + ||Dtv||%1(0,t;Hk’+1(Q)) + HDtU”QLl(o,t;HHI(Q)) )
An application of Grownwall’s inequality yields
2115 + o215 < Nlu2(0)I[5 + 1lp2(0)I[5 + € h%”(IIU(t)IIiuo,t;Hw(m) + 017 0,501
+ [ f2(u, U)Hil(o,t;HHl(Q)) + HDtUH%l(o,t;HHI(Q)) + ‘|Dtu‘|%1(0,t;H’€+1(Q))>'

Moreover, using the definition (5.3.2)-(5.3.3), the approximation property of the projection
operator R in Lemma (5.3)), we obtain:

|u(t) — un(®)llo + |lv(t) — va(t)|lo < C(HU(O) —up(0)o + [lv(0) — Uh(0)||0>
+C B (|U(0)’k+1 + [v(O) kg1 + llwll 1o ms+r @) + 10l Lo mms+1 @) + 1Dsull 1o, rms+1 (0

+ ||Dtv||L1(0,T;Hk+1(Q)) + [ f1(u, U)||L1(0,t;Hk“(Q)) + Hf2(u7U)HLl(O,t;Hk“(Q)))'
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Theorem 5.7. Let (u,v) € H}(Q) x H}(Q) be the solution of the system (5.1.8) -(5.1.11)
and let (up(t),vn(t)) € HE x HE be the discrete solution of the problem (5.2.6)-(5.2.7).
Then, under the assumption of Theorem 5.6 and for almost all t € (0,T)], there exists a
positive constant C' which depends on the mesh regularity parameter vy, the order of the
virtual element space k, the stability parameter of the discrete bilinear forms ay(-, ) and

mp(-, ), but independent of the mesh size h such that, we have,

[Vun(t) — Vu(t)|lo + [[Vor(t) — Vu(t)[lo < C(Hvuh(o) — Vu(0)[lo + [[Vun(0) — VU@)HO)
+Ch" (‘“(0)|k+1 + [0(0) k1 + lull 20,75m041 ) + [Vl 220,041 () + 1 Dee]| 20,1 m5+1 (02))

Dol 20,1501 @) + 11w v) || 20,1;m001@)) + [1f2(u; U)Hm(o,:r;mﬂ(m)) (5.3.14)

Proof. Recollecting the estimations (5.3.7) - (5.3.10), then substituting ¢, = (p2(t)); in
(5.3.7) and using the stability property of ay(-, -) and my(-, -), we have

1 1 d
S Bl (Ol + 5C mo s SV pa(0)I3
< C (W ulisr + B ol + R a0l + = unllo + 1o = vallo) 1(oa(8))ilo

(P fulir + 5 ol + = wnllo + o = villo) 1 Au(@) o | (o2(6))ello
+C R Dyl [1(pa(t)ilo

Using Young’s inequality appropriately yields

1 1 d
B + 5C mo o 2903
< C (Bl + R+ R f () R+ R Dl

i = walld + o = wall3). (5.3.15)

Analogously, estimating (5.2.7) we obtain

1 1 d
L8R + 20 mo 0 LIV O < © (Sl + B,
P2 fo(u, 0) [F iy + RPEY Dl = g+ [lv — UhH%)- (5.3.16)
Adding (5.3.15) and (5.3.16), and neglecting the positive term 1 3, (||(p2(£))¢]|24(p2(£))4]|2)
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and using Theorem 5.6 (for estimating ||u — uy||3 + ||v — v4||2 ), we obtain,

I3+ SN2 < O (lun0) — w(O)]Z + 1 0) — w(0)12)

FORED () 1+ 0O s + [l 0003y + 100 10013000y + 1Dl B zsmnss o

HID w220 g1 ) + 11w )22 0 st ) + | fo (s U)H%%O,T;H’““(Q)))‘

Integrating above equation on both sides from O to ¢, we get

IVo2(O)ll6 + Vi) < C(Hsz(O)II?) + IV 2(0)15 + [[un (0) — u(O)§ + [lva(0) — v(O)II?))

+CRPH <|U(O)‘i+1 + |v(0)[F s + HUH%Q(O,T;H’“H(Q)) + HUH%Q(O,T;H’“JFI(Q)) + HDtuH%2(0,T;Hk+1(Q))

+HDtUH%2(D7T;H’€+1(Q)) + Hfl(u7 U)H%Q(O,T;Hk“'l(ﬁ)) + ”f2(u7 U)H%Q(O,T;Hk“'l(ﬁ))) :

Using the definition (5.3.2)-(5.3.3), Lemma (5.3) and (5.3.17) we obtain the desired esti-
mate (5.3.14). U]

5.4 Error estimation for fully discrete scheme

In this section, we prove apriori error estimates showing optimal order convergence of
solutions of the fully discrete scheme (5.2.16)-(5.2.17), with respect to L? norm and H'!

semi-norm, at each time step.

Theorem 5.8. Let (u,v) € H}(Q) x Hy () be the solution of Equations (5.1.8)-(5.1.9) and
let (U™, V™) € HEF x HF be the solution of Equations (5.2.16)-(5.2.18) at time t,, € [0, T].
Further, consider the initial guess for the independent variables u,v as U° = I;,(u(0)) and
VY = I,(v(0)). Then, there exists a positive constant C' that is independent of the mesh

diameter h and the time increment At, such that the following estimation holds

10" = wltn)lo + V" = v(ta)llo < C(IU° = ulto)llo + 1V = v(to)llo) + C 1+ (Ju(0) g1

+ [0(0)k+1 + [[wll oo 0., 2741 (2)) + [[V] oo (0,001 (2)) + ([ Dete]| 10,8, 10+1 (2))
+ [ Devl| 20,0, e+1(2)) + 11 (2 ) || Lo (0,00 mr4102)) + Hf2(%U)HLoo(o,tn,HkH(Q)))
+C At (”Dttu||L1(0,tn,L2(Q)) + ||DttU||L1(0,tn,L2(Q))>'
Proof. To prove the fully discrete estimation, we employ (5.2.16), the definition of the Ritz
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projection operator, and the continuous weak formulation (5.1.8) and deduce that

n __ n—1
ma (22— o) + A (90 (I0U™), ga(TIRV™) ) an(pts on) = (FinU7, V), 00

At
~(iulta).v(t). on) — ey (L = Rtllncs) o) 4 (Dt on)

(A1 (), 20(1)) ) = Ar (@ (RU). 02TV ) alu(tn). o1). (541

An application of the approximation property of the projection operator I19 and using as-

sumption 5.1, the error generated by the force function approximation is bounded as :

[{in(U™ V), 0n) = (fi(u(tn), v(tn), on)] < CRH (\U(tn)lkﬂ + [v(tn) k41

(54.2)
UGt o))l ) lnllo + (o llo + liszllo) ionllo-

Further, using the same arguments as ([95], Theorem 3.3), we have

’mh<Rhu<tn) _Afhu(tn_ﬁﬁ,%) — (Dyult), @h)‘

<cq /At)( | AtDyult,) — ult,) = ulta1)llo

~~
—e
=my

+ B Jultn) = ulta )iy ) lenlo (5.4.3)

N~
—.n
=5

Using Assumption 5.1 and Green’s theorem, we obtain

(A (g1 (u(t). 92(0(82))) = A1 (92 (U, g2 (IV) )| la(ulta). 0)

54.4)
< C (WM ulba) g + B oltn)liss + lobllo + 1l ) 1 Aw(ta) o llnllo.

Upon choosing ¢p, = p4 in the Equation (5.4.1) and using (5.4.2)-(5.4.4), we have

ma(ps, p3) + (A1) Clmo, o, B.) IVA5I3 < C(8) (ni+ ) o3 o
+ C(8) AR (Juta)losr + [0(E) et + [Fr (), v(t) o1 ) 1ol

+ O At o ) A (1o lo + 1i5lo) 175 o+ (o5, o)

Proceeding same as ([95], Theorem 3.3), we obtain
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leglo < Clio o+ CAt(llp3llo + tllo ) + CAL B+ (Jultn)liss + [o(ta)liss

1 filult), vta)) i) + € (i 415, (545)

Similarly, from (5.2.17), we get

gl < Cllg o+ Cat(llp3llo + llo ) + CAt B (Jultn)liss + [o(ta)liss

Hhaultn), ot ) +C (€7 +6), (5.46)

where £ = ||AtDw(t,) — v(t,) + v(ta_1)|lo and & = R ju(t,) — v(ta_1)|ki1-
Applying the analogous arguments as [95, page 2124], we derive

v=1

Z ?71V < At HDttu||L1(O,tn;L2(Q)) and Z 7]5 < hk+1 ||Dtu||L1(0,tn;Hk+1(Q)). (547)
v=1 —
2161'/ < At ||DttU||Ll(07tn;L2(Q)) and 21512/ < hk+1 ||thU||L1(07tn;Hk+1(Q)). (5.4.8)

Adding the estimates (5.4.5) and (5.4.6) and proceeding as in [96, Theorem 4.4], we get

lello + llzllo < © (1+C Aty (llgBllo + 3llo) +C (At 1 37 (1+C Aty

v=1

([fr(ut,), v(t) lks1 + [ fo(u(t), v(t)) ks1 + |w(ts) e + lv(tu)!k+1)>
£ (14 CAD™ (41 + € + &), (5.4.9)

r=1

Using Taylor’s series expansion of (1 + C'At)"" and noting nAt < NrpAt < T, along
with the estimations (5.4.7), and (5.4.8), we derive

10510 + 113 llo < Cl165]l0 + l13llo) + C hkﬂ(“fl(uaU)HLoo(o,tn;HkH(Q)) + [l oo (0,0 541 (02))
[0l oo (0,4 mr1 )y + 1 Detel| 10,015+ 1 02y + D0 || 10,0515 +1(02)) + || f2 (0, U>||L°°(O,tn;Hk+1(Q)))

+C At (IIDuull sz2@) + 1Dt omizzon )

Using the estimations of ||p7||o and ||x}||o from Lemma 5.3 and the above inequality, we

obtain the desired result. O]
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Theorem 5.9. Let (u,v) € H}(Q) x HJ (L) be the solution of the weak formulation (5.1.8)-
(5.1.9) and (U™, V") € HF(Q) x HF(Q) be the solution of the discrete scheme (5.2.16)-
(5.2.18). Then, the following error estimations holds

IV @™ = ulta))llo + V(" = o(t)llo < € (IVU° = Vulto)llo + [VV° = To(to)]o)
+C h <|U(0)|k+1 + |0(0) k1 + Nl oo 0,0, 8+ 02)) + 101 Lo (0,0, 1541 (02))

+ | f1(u, U)HLoo(o,tn,HHl(Q)) + [ f2(u, U)HLoo(o,tn,HHl(ﬂ)) + HDtUHLQ(O,tn,HW(Q))

+ ||DtUHL2(o,tn,Hk+l(Q))> + CAt<\|Dttu||L2(0,tn;L2(Q)) + HDttUHLQ(o,tn;LQ(Q)))-

Proof. The error estimation for the fully discrete solution (U™, V") in the energy norm can
be done by employing the Ritz projection operator.

We first decompose the term U™ —u(t,,) as U™ —u(t,) := U™ —Rpu(t,) +Ruu(t,) —u(ty,).
Since, we can bound the term using the approximation property of the Ritz projection

operator, we will focus to estimate the term ||VU™ — VR ,u(t,)||o-

Using the fully discrete scheme (5.2.16) -(5.2.17), and the definition of the Ritz projection

operator, we write an equation in terms of pi as

mh(_pg _Afg ,g0h> + Au (g1 (IRU™), g2 (TRV™)) an(ps, on) = (frn(U™, V™), 1)
—(f1(ultn), v(tn)), on) — mn(OnRnultn), on) + (us(tn), on)

(A (uta), 20 () = A2 (IRU"), 9o (IRV™)) ) a(u(ta). on). (5:4.10)

Following (5.4.2), we can bound the term |{ f1,(U™, V™), on) — (f1(u(t,),v(ts)), ©n)|- The

last term of (5.4.10) can be bounded as follows

’Al (g1(u(tn)), g2(v(tn))) — Ay (gl(HgU”),QQ(HQV"))’ la(u(tn), ¢n)

. " (5.4.11)
<C (h Hulta)lesr + B o) ks + o3 lo + ||M£‘||o> [Au(ta) o [lenllo,

where, we have exploited assumption 5.1 and the approximation property of the operator
H%. Further, following the technique mentioned in [95, (34),Theorem 3.3], we obtain
1

| — mp(OnRiul(ts), on) + (Dyu(ty), on)| < C AL

() lenllo.  (5412)

Upon substituting ¢, = dpj in (5.4.10), and using (5.4.12), (5.4.10), and boundedness of

load term, we obtain

156



m
mp(9p3, Opy) + 70 . Vel < C M <|u(tn)|k+1 + [o(tn) k41

1 n n n (0 n 3
i (ultn), vt ) 107510 + € (Imlo + mg o ) 19510 + € (1o llo + Il llo) 10051l

Using Young’s inequality, kick back arguments, and proceeding analogous arguments as in
[95], we can deduce that

IVesIE < 1905 3+ € R 2(A0) (Julta) oy + o0t By + [ (), v(t) )

1 n n n n
+C s (i I+ s 13) + e (s lE + s ). (54.13)

Similarly from (5.2.17) and proceeding same as (5.4.13), we obtain

IV < I 13+ € R 2(A0) (Julta) oy + 00t i + [fa(ultn), v(t) )

]' n n n n
+C (€13 + 1E 1) + ¢ (o513 + a3 11). (5.4.14)

Upon summing Equations (5.4.13) and (5.4.14) and letting the sum v = 1,--- ,n, and
using the estimation of ", (Hpg llo + Il s ||0> from Theorem 5.8, we obtain the desired
result. O

5.5 Error estimation for linearized scheme

In this section, we estimate the rate of convergence in the space variable as well as the
time variable for the approximation (17 " ‘7") satisfying (5.2.19)-(5.2.20). Employing the
Ritz projection operator R, (see (5.3.1)), we split the terms u(t,) — U™ and v(t,) — V" as
follows

u(ty) = U™ = pf + 52" v(ta) — V" o=l + i

Theorem 5.10. Let (u,v) € H}(Q2) x HY(Q) be the solution of equations (5.1.8)-(5.1.11)
and {(U",V™)},, € HE x HE be the sequence of solutions of (5.2.16)-(5.2.18) for time

steps t, € [0,T]. Further, assume that the exact solution (u,v), and the force func-

tion fi(u,v), i € {1,2} satisfy the regularity assumptions, i.e. ||u|lpy,.m+1(0) <

0, | Deull 2o i)y < 00 [Devl|Li(o,pn:mr+1(0) < 00,

fi(u, "U) ||L1(0,tn;Hk+1(Q)) < oQ.

‘UHLOO(O7tn;Hk+1(Q)) < 00,

||Dttu||L1(o,tn;Hk+1(Q)) < 0%, DttUHLl(o,tn;HkH(Q)) < %,
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Then the following error estimation holds

1T = u(ta)llo + 17" = v(ta)llo < C(I1U° = u(O)lo + IV = v(0) o) + € A= (
Lo (0,t; HEH1(Q)) Lo (0,tn; HE+1(Q)) tW][L1(0,t,; HE+1(Q)) tU|| L1(0,tn; HFH1(Q))
Jul +lol + 1D + 1D

[ f1(w, V)| Loo (0,015 +1 () + [ f2(us U)HLoo(o,tn;HHl(Q))) +C At(HDttUHLl(o,tn;Hk+1(Q))

| Dol 10,8, x4 (92)) + Dt || 20,80 104+ (52)) + ||Dtv\|L1(0,tn;Hk+1(Q>)>'

The positive generic constant C' depends on mesh regularity ~, stability parameters of the
discrete bilinear forms ay,(-, -) and my(+, -) but is independent of the mesh parameter h and

time step At.

Proof. Using the projection operator Ry, we split the error as u(t,) — Un = = p} + p% and
v(t,) — V™ := u? + Jit. The estimations of p? and 7 are known from the approximation
property of R;,. In order to estimate p} and 15, we proceed as follows. By considering
(5.2.19), we obtain

<ﬁg _5,2171 > 0rrn—1 0{rn—1 ~n _ rrm—1 {rn—1
Mmp\ —, > %n +~’41 gl(HkU )792(Hkv ) ah(p2790h>_<f1h<U aV )7§0h>

At
() o), on) — g (AL RA) ) (D), 1)

+[A1<91( (tn)), g2(v(tn))) — -Al(gl(HkUn Y, go(TIV"~ 1))} a(u(tn), ¢n)- (5.5.1)

The load term in the right hand side can be rewritten as follows

(i@ V1) 0n) = (filultn), o(t)), on)]

< [T TRV, Ten) — (fu(Mu(t,), Tu(t)), Ten)|

+ [ (MMRu(ta), v (ta)), Tien) — (fi(u(ta), v(ta)), ign)]
+{fulultn), v(tn)), Mign) — (fi(u(tn), v(ta)), on)l.

(5.5.2)

Using assumption 5.1, the approximation property of the L? projection operator I1{, we

have:

@7, o0 = (aCulta), (k) on)
< O(IT" = utt)llo + 1771 = o(t)lo) llonl

4 pkH <’u<tn)|k+1 + o(tn) kg1 + [ fr(u(tn), U(tn>)’k+1) llenllo- (5.5.3)

158



Using the analogous technique as [95, Theorem 3.3], we split the term as

Rpu(t,) — Rou(t,— IR
wu(t,) AT ( 1>,goh>+<ptu<tn>,goh>|scE(m £ )lnllo- (5:5:4)

| — m(
Furthermore, the nonlocal coefficients can be decomposed as follows

| = Agi (IR U™, g (I V") + Ar(ga (ulta)), g2(v(ta)))] < € (Hﬁé"lllo

+ W ultn) ke + 1 Dol e, 220y + 1 llo + B o(tn) [k + IIDtvHmn,l,tn,Lzm)))-
(5.5.5)

Upon substituting (5.5.3) -(5.5.5) into (5.5.1), we have

1750 < 178 Mo+ C AR (Jultn) s + o) lisr + L (ulta), o(ta) s

FAE (T —ult)lo + 1V = v(t)lo) + O (nf +05). 5.56)
Using same technique as above, we obtain
17l < N o +C AR (Jutn)li + ot + | falultn), v(t) s )
FAE (07 —ult)o + 1V —v(t)lo) + O (& +8). 657

We decompose the term

1T —u(ty)llo < C U™ = Ryuu(tu-s)llo + A [ultn) st + [u(tasr) — ultn)) lo-
(5.5.8)
and

V"t —ot)llo < C IV = Ryv(tai)llo + 25 [(ta—i) st + [0(En-1) — v(ta)) -
(5.5.9)
Using the estimations (5.5.8), and (5.5.9), and adding (5.5.6) and (5.5.7), we deduce

17500 + 1750 < € (I1U° = ulto)llo + 1V = vto)llo) + C W (lull oeqo 1y
[Vl oo 0,6, 1041 ) F 11 (2 V) || oo 0,0, 1 (02)) + 1 f2 (2, V) || oo 0,0, 51 (02)) + [ De]| Loo (0,00, 115+1 (2)

+ ||Dtv||L°°(0,tn,Hk+1(Q))) +C Alt(||DttuHLl(o,tn;LZ’(Q)) + ||Dttv||L1(o,tn;L2(Q)))~
(5.5.10)
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Together with (5.5.10) and an application of the estimations ||p}||o and ||} |0 ( using

Lemma 5.3|), we obtain the desired result. O]

5.6 Numerical Experiments

In this section, we study the convergence and the accuracy of the virtual element method
by solving a nonlocal parabolic problem for a manufactured solution. We consider a square
domain, © = [0,1] x [0,1]. The computational domain is discretized with different type
of elements, viz., distorted square, non-convex mesh and smoothed Voronoi. A few repre-
sentative meshes are shown in Figure 5.1. In this study, for spatial discretization, we have
considered the virtual element space of orders, £ = 1,2 and 3. For temporal discretization,
we have employed the backward Euler time integration scheme. For convergence study,
the errors are computed at the final time 7" in the L? and the H' norms. Since the discrete
solutions are implicitly defined on the virtual space, the errors are computed using the two

projection operators as follows:

L?-norm error: &, := \/Z |u(T) — H%EUNTHaE.

Eeyy,

H'-norm error: &, ; = \/Z |Vu(T) = VIIY JUNT |3 .

Eeyy,

(a) Distorted Square (b) Non-convex (¢) Smoothed Voronoi

Figure 5.1: A schematic representation of different discretizations employed in this study.

Consider the model problem (5.1.1)-(5.1.5), where the nonlocal coefficients are defined
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as:

Ay (91(u), 92(v) ) = 3+ cos(ga(w) +sin(ga(v))
s (91(u), 92(v) ) =5 = cos(ga(w) + sin(ga(w).

The force functions (fi, f2) are computed by imposing the following manufactured solu-

tions:

u=(zx—a*) (y—y?) e’
v=2(z—2% (y—y°)e*

as the exact solutions of (5.1.1)-(5.1.2) and ¢;(u) = [,u dQ, g2(v) = [, v dQ. To re-
duce the computational cost, one additional variable is augmented to the nonlinear system
and the resulting nonlinear system is solved using the Newton’s method with a user speci-
fied tolerance as O(10'°). This ensures that the sparsity of the Jacobian is retained. The
nonlinear loop takes between two to five iterations for the convergence of the numerical so-
lution. The convergence of the error in the L? and H! norms for the independent variables,
u and v are shown in Figures 5.2-5.3 for £ = 1,2 and k = 3, respectively. It is seen that
the numerical scheme converges at an optimal order in the respective norms. In Figure 5.5,
the convergence behaviour of the numerical solution obtained from the linearized scheme
(5.2.19) -(5.2.20) for the virtual element space of orders £ = 1,2 is shown. It is observed
that the numerical solution converges optimally to the analytical solution as predicted in
Theorem 35.10.

Now, we study the convergence behavior in the temporal variable ¢. This is done by
setting the mesh parameter h = 1/80 for all the considered discretization types. The time
increment is chosen as At = 1/4,1/8,1/16,1/32. The errors are computed at the end of
the each time step ¢, forn = 1, ..., Ny and added to obtain the cumulative errors up to the

final time 7" and is given by:

Ny 1/2
€0,T,h,0 = <Atz (Z llu(t,) — H%EU"HaE)) ) (5.6.1)

n=1 Eecyy,

In this case, we only report the results for the lowest order virtual element space, i.e., k =
1. Figure 5.4 shows the convergence of the error in the L? norm for both the independent
variables. It can be inferred that the numerical scheme yields optimal convergence rate as

predicted in Theorem 5.8. Further, it is noted that for higher order virtual element space,
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the numerical scheme converges at an optimal rate.
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Figure 5.2: Convergence of the errors in the L? norm and H! norm for £ = 1 and 2 and
for the variables, v and v
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Figure 5.3: Convergence of the errors in the L? norm and H* norm for k = 3 and for the

variables, u and v
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5.7 Summary

In this chapter, we have employed the virtual element method to solve the coupled non-
local parabolic equation. First, we prove optimal order convergence for the semi-discrete
virtual element formulation with respect to L? and H' norms. For defining a fully discrete
scheme, we use the backward Euler method to discretise the time derivative, and the vir-
tual element method is used for the spatial discretisation. The presence of the nonlocal
diffusive coefficients reduces the sparsity of the Jacobian of the nonlinear system. This
increase the computational and storage complexity, in contrast to the local problem. To
alleviate this difficulty, we have extended Gudi’s approach within the context of the virtual
element method. In the discrete system of equations, we have introduced two more new
variables corresponding to the nonlocal functions g; and g,. The explicit definition of the
entries of the Jacobian obtained for the modified system of equations reveals that the Jaco-
bian is sparse. We derived the optimal order error estimates in the L? and H' norms for the
fully discrete scheme. To further reduce the computational complexity, a linearized scheme
without compromising the rate of convergence in different norms was proposed. Finally,
the theoretical results are justified through numerical experiments over arbitrary polygonal

meshes.
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Chapter 6
Future Work

As an extension of this thesis, we suggest the following topics for further investigation.

1. We can formulate a computable stabilized VEM scheme for the nonlinear convection-
diffusion-reaction equation and derive apriori error estimates under suitable norm for

other residual based stabilizers.

2. Some symmetric stabilization methods (for example, the Local Projection stabiliza-
tion method) have been successfully tested in FEM context. We can investigate these
symmetric stabilization methods in the VEM framework. One study the effect of
these stabilizer in VEM scheme, in sense of both theoretical analysis and numerical

experimentation, for convection dominated problems.

3. We can explore the performance of stabilized VEM for nonstationary and nonlinear

problems.

4. We can look into the study of VEM for a system of time-dependent nonlinear convection-
diffusion-reaction equations that arise in several practical applications. In fact, this

topic is currently under our investigation.

5. We can scrutinize the addition of various stabilization method to nonconforming
VEM.

6. In practice, the Navier-Stokes equation have isolated solutions, usually mathemati-
cally expressed by the notion of branches of nonsingular solutions. We can propose

and analyse VEM approximation of branches of nonsingular solutions.

7. For the two-grid method, we can try to derive optimal apriori error estimates in H*

norm.
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8. Nonlocal models arise in many important practical applications. Few model exam-
ples are classical Lotka-Volterra prey-predator model with nonlocal diffusion, nonlo-
cal parabolic systems modelling spread of a disease or epidemic, modelling diffusion
in heterogeneous environment to cracks and fractures in composites. We shall con-
sider approximating these nonlocal problems on polygonal or polyhedral discretisa-
tion using 2D or 3D VEM.

9. Nonlocal models for convection-diffusion problems exist in literature. For the con-
vection dominated case, we shall consider studying stabilized VEM approximation

of the nonlocal convection-diffusion equation.
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